精英家教网 > 高中数学 > 题目详情
设φ∈R,则“φ=0”是“f(x)=cos(x+φ)(x∈R)为偶函数”的( )
A.充分而不必要条件
B.必要而不充分条件
C.充分必要条件
D.既不充分也不必要条件
【答案】分析:直接把φ=0代入看能否推出是偶函数,再反过来推导结论即可.
解答:解:因为φ=0时,f(x)=cos(x+φ)=cosx是偶函数,成立;
但f(x)=cos(x+φ)(x∈R)为偶函数时,φ=kπ,k∈Z,推不出φ=0.
故“φ=0”是“f(x)=cos(x+φ)(x∈R)为偶函数”的充分而不必要条件.
故选:A.
点评:断充要条件的方法是:
①若p⇒q为真命题且q⇒p为假命题,则命题p是命题q的充分不必要条件;
②若p⇒q为假命题且q⇒p为真命题,则命题p是命题q的必要不充分条件;
③若p⇒q为真命题且q⇒p为真命题,则命题p是命题q的充要条件;
④若p⇒q为假命题且q⇒p为假命题,则命题p是命题q的即不充分也不必要条件.
⑤判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•天津)设φ∈R,则“φ=0”是“f(x)=cos(x+φ)(x∈R)为偶函数”的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设φ∈R,则“φ=0”是“f(x)=sin(x+φ)(x∈R)为奇函数”的(  )

查看答案和解析>>

科目:高中数学 来源:2012-2013学年浙江省衢州市江山实验中学高三(上)9月月考数学试卷(理科)(解析版) 题型:选择题

设φ∈R,则“φ=0”是“f(x)=cos(x+φ)(x∈R)为偶函数”的( )
A.充分而不必要条件
B.必要而不充分条件
C.充分必要条件
D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源:2012-2013学年新课标高三(上)数学一轮复习单元验收7(文科)(解析版) 题型:选择题

设φ∈R,则“φ=0”是“f(x)=cos(x+φ)(x∈R)为偶函数”的( )
A.充分而不必要条件
B.必要而不充分条件
C.充分必要条件
D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源:2012年天津市高考数学试卷(理科)(解析版) 题型:选择题

设φ∈R,则“φ=0”是“f(x)=cos(x+φ)(x∈R)为偶函数”的( )
A.充分而不必要条件
B.必要而不充分条件
C.充分必要条件
D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案