精英家教网 > 高中数学 > 题目详情
已知各项均为正数的数列{an}的前n项和满足Sn>1,且6Sn=(an+1)(an+2),n∈N*
(1)求数列{an}的通项公式;
(2)设bn=
1anan+1
,求数列{bn}的前n项和Tn
分析:(1)由6Sn=
a
2
n
+3an+2
,知6Sn-1=
a
2
n-1
+3an-1+2
,两式作差,即可证明{an}为等差数列,从而求出an
(2)由an=3n-1,推导出bn=
1
anan+1
=
1
3
1
3n-1
-
1
3n+2
),由此利用裂项求和法能求出数列{bn}的前n项.
解答:解:(1)∵6Sn=
a
2
n
+3an+2

6Sn-1=
a
2
n-1
+3an-1+2

6an=
a
2
n
+3an-
a
2
n-1
-3an-1

∴(an+an-1)(an-an-1-3)=0,
∵an>0,∴an-an-1=3,∴{an}为等差数列,…(3分)
6S1=
a
2
1
+3a1+2

a
2
1
-3a1+2=0

∵a1>1,∴a1=2,
∴an=3n-1,…(6分)
(2)∵an=3n-1,
∴bn=
1
anan+1

=
1
(3n-1)(3n+2)

=
1
3
1
3n-1
-
1
3n+2
).…(9分)
∴数列{bn}的前n项和
Tn=
1
3
[(
1
2
-
1
5
)+(
1
5
-
1
8
)+…+(
1
3n-1
-
1
3n+2
)]
=
1
3
(
1
2
-
1
3n+2
)

=
n
6n+4
.…(12分)
点评:本题考查数列的通项公式和前n项和公式的求法,解题时要认真审题,注意迭代法和裂项求和法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知各项均为正数的数列{an}满足an+12=2an2+anan+1,a2+a4=2a3+4,其中n∈N*
(Ⅰ)求数{an}的通项公式;
(Ⅱ)设数{bn}的前n项和Tn,令bn=an2,其中n∈N*,试比较
Tn+1+12
4Tn
2log2bn+1+2
2log2bn-1
的大小,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知各项均为正数的数列{an}满足an+12=2an2+anan+1,a2+a4=2a3+4,其中n∈N*
(Ⅰ)求数{an}的通项公式;
(Ⅱ)设数{bn}的前n项和Tn,令bn=an2,其中n∈N*,试比较数学公式数学公式的大小,并加以证明.

查看答案和解析>>

科目:高中数学 来源:青岛二模 题型:解答题

已知各项均为正数的数列{an}满足an+12=2an2+anan+1,a2+a4=2a3+4,其中n∈N*
(Ⅰ)求数{an}的通项公式;
(Ⅱ)设数{bn}的前n项和Tn,令bn=an2,其中n∈N*,试比较
Tn+1+12
4Tn
2log2bn+1+2
2log2bn-1
的大小,并加以证明.

查看答案和解析>>

科目:高中数学 来源:《第2章 数列》、《第3章 不等式》2010年单元测试卷(陈经纶中学)(解析版) 题型:解答题

已知各项均为正数的数列{an}满足an+12=2an2+anan+1,a2+a4=2a3+4,其中n∈N*
(Ⅰ)求数{an}的通项公式;
(Ⅱ)设数{bn}的前n项和Tn,令bn=an2,其中n∈N*,试比较的大小,并加以证明.

查看答案和解析>>

科目:高中数学 来源:2012年高考复习方案配套课标版月考数学试卷(二)(解析版) 题型:解答题

已知各项均为正数的数列{an}满足an+12=2an2+anan+1,a2+a4=2a3+4,其中n∈N*
(Ⅰ)求数{an}的通项公式;
(Ⅱ)设数{bn}的前n项和Tn,令bn=an2,其中n∈N*,试比较的大小,并加以证明.

查看答案和解析>>

同步练习册答案