精英家教网 > 高中数学 > 题目详情
(2014•广东模拟)为了更好的开展社团活动,丰富同学们的课余生活,现用分层抽样的方法从“模拟联合国”,“街舞”,“动漫”,“话剧”四个社团中抽取若干人组成校社团指导小组,有关数据见下表(单位:人)
社团 相关人数 抽取人数
模拟联合国 24 a
街舞 18 3
动漫 b 4
话剧 12 c
(1)求a,b,c的值;
(2)若从“动漫”与“话剧”社团已抽取的人中选2人担任指导小组组长,求这2人分别来自这两个社团的概率.
分析:(1)由表可知抽取比例为
3
18
=
1
6
,由此求得a,b,c的值.
(2)一一列举出所有基本事件,求出所有基本事件的个数,从中找出2人分别来自这两个社团的基本事件,即可求得所求事件的概率.
解答:解:(1)由表可知抽取比例为
3
18
=
1
6
,故a=24×
1
6
=4,b=4×6=24,c=12×
1
6
=2.(4分)
(2)设“动漫”4人分别为:A1,A2,A3,A4;“话剧”2人分别为:B1,B2.则从中任选
2人的所有基本事件为:(A1,A2),(A1,A3),(A1,A4),(A2,A3),(A2,A4),(A3,A4),(A1,B1),
(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(A4,B1),(A4,B2),(B1,B2)共15个,(8分)
其中2人分别来自这两个社团的基本事件为:(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),
(A3,B2),(A4,B1),(A4,B2)共8个,(10分)
所以这2人分别来自这两个社团的概率P=
8
15
.(12分)
点评:本题主要考查分层抽样的定义和方法,抽样过程中每个个体被抽到的可能性相同,这是解决一部分抽样问题的依据,求古典概率模型,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2014•广东模拟)如图,四棱锥P-ABCD的底面ABCD是正方形,PD⊥平面ABCD,E为PB上的点,且2BE=EP.
(1)证明:AC⊥DE;
(2)若PC=
2
BC,求二面角E-AC-P的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2014•广东模拟)已知x,y满足约束条件
x-y+5≥0
x+y≥0
x≤3
,则z=2x+4y的最小值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2014•广东模拟)已知集合M={0,1,2,3,4},N={-2,0,2},则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2014•广东模拟)下列函数中,既是奇函数又是减函数的是(  )

查看答案和解析>>

同步练习册答案