精英家教网 > 高中数学 > 题目详情
12.若双曲线$\frac{x^2}{4}+\frac{y^2}{m}=1$的焦点与椭圆$\frac{x^2}{9}+\frac{y^2}{3}=1$的焦点重合,则m的值为(  )
A.8B.2C.-2D.-8

分析 求出椭圆的焦点坐标,双曲线的焦点坐标,利用条件得到方程求解即可.

解答 解:椭圆$\frac{x^2}{9}+\frac{y^2}{3}=1$的焦点($±\sqrt{6}$,0),
双曲线$\frac{x^2}{4}+\frac{y^2}{m}=1$的焦点:(±$\sqrt{4-m}$,0),
双曲线$\frac{x^2}{4}+\frac{y^2}{m}=1$的焦点与椭圆$\frac{x^2}{9}+\frac{y^2}{3}=1$的焦点重合,
$\sqrt{4-m}=\sqrt{6}$,
解得m=-2.
则m的值为:-2.
故选:C.

点评 本题考查椭圆以及双曲线的简单性质的应用,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.函数$y=\frac{{\sqrt{x+1}}}{lg(2-x)}$的定义域是(  )
A.[-1,2)B.(1,2)C.[-1,1)∪(1,2)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知△ABC的面积为$\sqrt{3}$且b=2,c=2,则∠A等于(  )
A.30°B.30°或150°C.60°D.60°或120°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知$m=a+\frac{1}{a-2}({a>2})$,n=4-x2,则(  )
A.m>nB.m<nC.m=nD.m≥n

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知椭圆的一个焦点为F(0,1),离心率$e=\frac{1}{2}$,则椭圆的标准方程为$\frac{{y}^{2}}{4}$+$\frac{{x}^{2}}{3}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,已知A、B是两个顶点,且$AB=2\sqrt{3}$,动点M到点A的距离是4,线段MB的垂直平分线l交MA于点P.
(1)当M变化时,建立适当的坐标系,求动点P的轨迹方程.
(2)设P的轨道为曲线C,斜率为1的直线交曲线C于N、Q两点,O为坐标原点,求△NOQ面积的最大值,及此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数y=$\frac{{x}^{2}}{{3}^{x}-1}$的图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知等差数列{an}的前n项和为${S_n}=p{n^2}-2n(p∈R),n∈{N^*}$,且a1与a5的等差中项为18.
(1)求{an}的通项公式;
(2)若an=2log2bn,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.一批10件产品,其中有3件次品,7件正品,不放回抽取2次,若第一次抽到的是正品,则第二次抽到次品的概率$\frac{1}{3}$.

查看答案和解析>>

同步练习册答案