精英家教网 > 高中数学 > 题目详情

【题目】从某工厂的一个车间抽取某种产品50件,产品尺寸(单位:)落在各个小组的频数分布如下表:

数据分组

频数

3

8

9

12

10

5

3

(1)根据频数分布表,求该产品尺寸落在的概率;

(2)求这50件产品尺寸的样本平均数.(同一组中的数据用该组区间的中点值作代表);

(3)根据产品的频数分布,求出产品尺寸中位数的估计值.

【答案】(1)0.16;(2)22.7;(3)22.75

【解析】试题分析:(1)根据频数分布表可知,产品尺寸落在内的个数为8,从而所求概率为.(2)根据“同一组中的数据用该组区间的中点值作代表”可以计算件产品的样本平均数为.(3)根据频数分布表可知中位数必定在区间,前3组的产品个数共个,故中位数的估计值为.

解析:(1)根据频数分布表可知,产品尺寸落在内的概率.

(2)样本平均数

.

(3).中位数在区间上,中位数为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知直角坐标系中动点,参数,在以原点为极点、轴正半轴为极轴所建立的极坐标系中,动点在曲线上.

(1)求点的轨迹的普通方程和曲线的直角坐标方程;

(2)若动点的轨迹和曲线有两个公共点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线 的焦点与椭圆 的一个焦点重合,点在抛物线上,过焦点的直线交抛物线于两点.

(Ⅰ)求抛物线的方程以及的值;

(Ⅱ)记抛物线的准线轴交于点,试问是否存在常数,使得都成立?若存在,求出实数的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以原点为极点,轴的非负半轴为极轴建立极坐标系,已知曲线的极坐标方程为:,在平面直角坐标系中,直线的方程为为参数).

(1)求曲线和直线的直角坐标方程;

(2)已知直线交曲线两点,求两点的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线过点,其参数方程为为参数,),以为极点,轴非负半轴为极轴建立极坐标系,曲线的极坐标方程为

(1)求曲线的普通方程和曲线的直角坐标方程;

(2)求已知曲线和曲线交于两点,且,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量

)求函数的单增区间.

)若,求值.

)在中,角的对边分别是.且满足,求函数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为分别为椭圆的左、右顶点,点满足

)求椭圆的方程;

)设直线经过点且与交于不同的两点,试问:在轴上是否存在点,使得直线 与直线的斜率的和为定值?若存在,请求出点的坐标及定值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,函数.

(Ⅰ)判断函数的单调性;

(Ⅱ)若时,对任意,不等式恒成立,求实数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着社会的发展,终身学习成为必要,工人知识要更新,学习培训必不可少,现某工厂有工人1000名,其中250名工人参加短期培训(称为类工人),另外750名工人参加过长期培训(称为类工人),从该工厂的工人中共抽查了100名工人,调查他们的生产能力(此处生产能力指一天加工的零件数)得到类工人生产能力的茎叶图(左图),类工人生产能力的频率分布直方图(右图).

(1)问类、类工人各抽查了多少工人,并求出直方图中的

(2)求类工人生产能力的中位数,并估计类工人生产能力的平均数(同一组中的数据用该组区间的中点值作代表);

(3)若规定生产能力在内为能力优秀,由以上统计数据在答题卡上完成下面的列联表,并判断是否可以在犯错误概率不超过0.1%的前提下,认为生产能力与培训时间长短有关.能力与培训时间列联表

短期培训

长期培训

合计

能力优秀

能力不优秀

合计

参考数据:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

参考公式:,其中.

查看答案和解析>>

同步练习册答案