精英家教网 > 高中数学 > 题目详情

【题目】如图,圆形纸片的圆心为O,半径为5cm,该纸片上的正六边形ABCDEF的中心为OGHMNPQ为圆O上的点,△GAB,△HBC,△MCD,△NDE,△PEF,△QAF分别是以ABBCCDDEEFFA为底边的等腰三角形,沿虚线剪开后,分别以ABBCCDDEEFFA为折痕折起△GAB,△HBC,△MCD,△NDE,△PEF,△QAF,使得GHMNPQ重合,得到六棱锥.当正六边形ABCDEF的边长变化时,所得六棱锥体积(单位:cm3)的最大值为(

A.B.C.D.

【答案】B

【解析】

连接,交与点,由题意,,设,则,求出棱锥的高,和底面面积,由体积公式求得体积的表达式,引入函数,利用导数可求得其最大值.

如图,连接,交与点,由题意,,设,则

六棱锥的高

,令,即

时,递增,当时,递减,

上的唯一极大值,也是最大值.

,所以体积最大值为

故选:B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为短轴长为.

(1)求椭圆的方程;

(2)设过点的直线与椭圆交于两点,是椭圆的上焦点.问:是否存在直线使得?若存在,求出直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱锥中,,且,则该三棱锥的外接球的表面积为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,且函数是偶函数.

1)求的解析式;.

2)若不等式上恒成立,求n的取值范围;

3)若函数恰好有三个零点,求k的值及该函数的零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若数列满足:存在正整数T,对于任意正整数n都有成立,则称数列为周期数列,周期为T.已知数列满足,则下列结论中错误的是(

A.,则m可以取3个不同的值;

B.,则数列是周期为3的数列;

C.对于任意的T≥2,存在,使得是周期为的数列

D.存在,使得数列是周期数列

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形是边长为2的正方形,平面平面,且.

(1)证明:平面平面

(2)当,且与平面所成角的正切值为时,求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2016年入冬以来,各地雾霾天气频发,频频爆表(是指直径小于或等于微米的颗粒物),各地对机动车更是出台了各类限行措施,为分析研究车流量与的浓度是否相关,某市现采集周一到周五某一时间段车流量与的数据如下表:

时间

周一

周二

周三

周四

周五

车流量(万辆)

50

51

54

57

58

的浓度(微克/立方米)

69

70

74

78

79

1)请根据上述数据,在上面给出的坐标系中画出散点图;

2)试判断是否具有线性关系,若有请求出关于的线性回归方程,若没有,请说明理由;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】由国家公安部提出,国家质量监督检验检疫总局发布的《车辆驾驶人员血液、呼气酒精含量阀值与检验标准(GB/T19522-2010)》于2011年7月1日正式实施.车辆驾驶人员酒饮后或者醉酒后驾车血液中的酒精含量阀值见表.经过反复试验,一般情况下,某人喝一瓶啤酒后酒精在人体血液中的变化规律的“散点图”见图,且图表示的函数模型,则该人喝一瓶啤酒后至少经过多长时间才可以驾车(时间以整小时计算)?(参考数据:

驾驶行为类型

阀值

饮酒后驾车

醉酒后驾车

车辆驾车人员血液酒精含量阀值

喝1瓶啤酒的情况

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图正方体的棱长为1,线段上有两个动点,则下列结论错误的是(

A. 所成角为

B. 三棱锥的体积为定值

C. 平面

D. 二面角是定值

查看答案和解析>>

同步练习册答案