精英家教网 > 高中数学 > 题目详情
设数列{an}的前n项和为Sn=n2,则a9的值是
 
考点:数列递推式
专题:等差数列与等比数列
分析:由已知得a9=S9-S8,由此能求出结果.
解答: 解:∵数列{an}的前n项和为Sn=n2
∴a9=S9-S8=92-82=17.
故答案为:17.
点评:本题考查数列的第9项的求法,是基础题,解题时要注意公式an=
S1,n=1
Sn-Sn-1,n≥2
的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某休闲农庄有一块长方形鱼塘ABCD,AB=50米,BC=25
3
米,为了便于游客休闲散步,该农庄决定在鱼塘内建三条如图所示的观光走廊OE、EF和OF,考虑到整体规划,要求O是AB的中点,点E在边BC上,点F在边AD上,且∠EOF=90°.
(1)设∠BOE=α,试将△OEF的周长l表示成α的函数关系式,并求出此函数的定义域;
(2)经核算,三条走廊每米建设费用均为4000元,试问如何设计才能使建设总费用最低并求出最低总费用.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在公比不等于1的等比数列{an}中,a2,a8,a5成等差数列.
(1)求证:S4,S10,S7成等差数列;
(2)若a1=1,数列{|an3|}的前项和为Tn,求证:Tn<2.

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:-24-
12
+|1-4sin60°|+(π-
2
3
0

查看答案和解析>>

科目:高中数学 来源: 题型:

在下列四个命题中:
①函数y=f(2x-1)的定义域为(-1,1),则f(x+1)的定义域为(-4,0);
②函数f(x)=lnx+4x-13的零点一定位于区间(2,3);
③函数f(x)=log 
1
2
(2x2-3x+1)的增区间是(-∞,
1
2
];
④函数f(x)是定义域为[-1,1]的偶函数,且在[0,1]上递增,而且f(x-1)<f(2x-1),则x的取值范围为(
2
3
,1].
其中正确的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

正整数指数函数y=(a+1)x是x∈N上的减函数,则a的取值范围是(  )
A、0<a<1B、-1<a<0
C、a>0D、a≥0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sin(
π
3
-x)=
3
5
,则cos(
6
-x)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知α,β都是锐角,sinα=
4
5
,cos(α+β)=
5
13

(Ⅰ)求tan2α的值;
(Ⅱ)求sinβ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若sin(π-α)-cos(-α)=
1
2
,则sin3(π+α)+cos3(2π+α)的值是
 

查看答案和解析>>

同步练习册答案