分析 要证明当α>-1时,(1+α)n≥1+nα,先证明n=1时,(1+α)n≥1+nα成立,再假设n=k时,(1+α)n≥1+nx成立,进而证明出n=k+1时,(1+α)n≥1+nα也成立,即可得到对于任意正整数n:当α>-1时,(1+α)n≥1+nα.
解答 解:因为(1+α)n≥1+αn为关于n的不等式,x为参数,以下用数学归纳法证明:
(ⅰ)当n=1时,原不等式成立;
当n=2时,左边=1+2α+α2,右边=1+2α,
因为x2≥0,所以左边≥右边,原不等式成立;
(ⅱ)假设当n=k时,不等式成立,即(1+α)k≥1+kα,
则当n=k+1时,
∵α>-1,
∴1+α>0,于是在不等式(1+α)k≥1+kα两边同乘以1+α得
(1+α)k•(1+α)≥(1+kα)•(1+α)=1+(k+1)α+kα2≥1+(k+1)α,
所以(1+α)k+1≥1+(k+1)α.即当n=k+1时,不等式也成立.
综合(ⅰ)(ⅱ)知,对一切正整数n,不等式都成立
点评 数学归纳法常常用来证明一个与自然数集N相关的性质,其步骤为:设P(n)是关于自然数n的命题,若1)(奠基) P(n)在n=1时成立;2)(归纳) 在P(k)(k为任意自然数)成立的假设下可以推出P(k+1)成立,则P(n)对一切自然数n都成立.
科目:高中数学 来源: 题型:选择题
A. | 充分不必要条件 | B. | 必要不充分条件 | ||
C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | -$\frac{7\sqrt{2}}{10}$ | B. | -$\frac{\sqrt{2}}{10}$ | C. | $\frac{\sqrt{2}}{10}$ | D. | $\frac{7\sqrt{2}}{10}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com