科目:高中数学 来源:2012-2013学年湖北省八校高三第二次联考文科数学试卷(解析版) 题型:解答题
已知函数,其中是常数且.
(1)当时,在区间上单调递增,求的取值范围;
(2)当时,讨论的单调性;
(3)设是正整数,证明:.
查看答案和解析>>
科目:高中数学 来源:2013届浙江省高二下学期第一次统练理科数学试卷(解析版) 题型:解答题
已知函数,其中是常数.
(1)当时,求曲线在点处的切线方程;
(2)若存在实数,使得关于的方程上有两个不相等的实数根,求的取值范围.
查看答案和解析>>
科目:高中数学 来源:2014届北京市高一第一学期期末考试数学 题型:解答题
(本小题满分13分)
已知函数,其中是常数.
(Ⅰ)当时,求曲线在点处的切线方程;
(Ⅱ)若存在实数,使得关于的方程在上有两个不相等的实数根,求的取值范围.
查看答案和解析>>
科目:高中数学 来源:2012届北京市海淀区高三上学期期末考试理科数学 题型:解答题
(本小题满分13分)
已知函数,其中是常数.
(Ⅰ)当时,求曲线在点处的切线方程;
(Ⅱ)若存在实数,使得关于的方程在上有两个不相等的实数根,求的取值范围.
查看答案和解析>>
科目:高中数学 来源:2012届北京市海淀区高三上学期期末考试文科数学 题型:解答题
(本小题满分13分)已知函数,其中是常数.
(Ⅰ)当时,求在点处的切线方程;
(Ⅱ)求在区间上的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com