精英家教网 > 高中数学 > 题目详情

【题目】已知数列中,,前n项和为,且.

1)求

2)证明数列为等差数列,并写出其通项公式;

3)设,试问是否存在正整数pq(其中),使成等比数列?若存在,求出所有满足条件的数组(pq);若不存在,说明理由.

【答案】12)证明见解析;3存在唯一正整数数对,使成等比数列;详见解析

【解析】

1)令,即可求

2)根据等差数列的等差中项法即可证明数列为等差数列,并写出其通项公式;

3)根据等比数列的定义和通项公式,分类讨论,通过数列的单调性求出数列最值,结合题意判断求解,即可得到结论.

1)令,则.

2)由,即,①

.

-①,得.

于是,.

+④,得,即.

所以,数列是以0为首项,1为公差的等差数列.

所以,.

3)假设存在正整数数组(其中),使成等比数列,

成等差数列,于是.

时,,故数列为递减数列,

时,,故数列为递减数列,

,即时,.

又当时,,故无正整数q使得成立.

综上得,存在唯一正整数数对,使成等比数列.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】博览会安排了分别标有序号为“1号”“2号”“3号”的三辆车,等可能随机顺序前往酒店接嘉宾.某嘉宾突发奇想,设计两种乘车方案.方案一:不乘坐第一辆车,若第二辆车的车序号大于第一辆车的车序号,就乘坐此车,否则乘坐第三辆车;方案二:直接乘坐第一辆车.记方案一与方案二坐到“3号”车的概率分别为P1,P2,则( )

A. P1P2 B. P1=P2 C. P1+P2 D. P1<P2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某县共有户籍人口60万,经统计,该县60岁及以上、百岁以下的人口占比,百岁及以上老人15人.现从该县60岁及以上、百岁以下的老人中随机抽取230人,得到如下频数分布表:

年龄段(岁)

人数(人)

125

75

25

5

(1)从样本中70岁及以上老人中,采用分层抽样的方法抽取21人,进一步了解他们的生活状况,则80岁及以上老人应抽多少人?

(2)从(1)中所抽取的80岁及以上老人中,再随机抽取2人,求抽到90岁及以上老人的概率;

(3)该县按省委办公厅、省人民政府办公厅《关于加强新时期老年人优待服务工作的意见》精神,制定如下老年人生活补贴措施,由省、市、县三级财政分级拨款:

①本县户籍60岁及以上居民,按城乡居民养老保险实施办法每月领取55元基本养老金;

②本县户籍80岁及以上老年人额外享受高龄老人生活补贴;

(a)百岁及以上老年人,每人每月发放345元的生活补贴;

(b)90岁及以上、百岁以下老年人,每人每月发放200元的生活补贴;

(c)80岁及以上、90岁以下老年人,每人每月发放100元的生活补贴.

试估计政府执行此项补贴措施的年度预算.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形ABCD为平行四边形,点EAB上,AE2EB2,且DEAB.DE为折痕把△ADE折起,使点A到达点F的位置,且∠FEB60°.

1)求证:平面BFC⊥平面BCDE

2)若直线DF与平面BCDE所成角的正切值为,求二面角EDFC的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列abc是各项均为正数的等差数列,公差为dd0).在ab之间和bc之间共插入n个实数,使得这n+3个数构成等比数列,其公比为q

1)求证:|q|1

2)若a1n1,求d的值;

3)若插入的n个数中,有s个位于ab之间,t个位于bc之间,且st都为奇数,试比较st的大小,并求插入的n个数的乘积(用acn表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若的图像在处的切线与轴平行,求的极值;

(2)若函数内单调递增,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥的正视图是一个底边长为4腰长为3的等腰三角形,图1、图2分别是四棱锥的侧视图和俯视图.

1)求证:

2)求四棱锥的体积及侧面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在五棱锥中,平面,,

1)证明:

2)过点作平行于平面的截面,与直线分别交于点,求夹在该截面与平面之间的几何体体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】边长为的等边三角形内任一点到三边距离之和为定值,则这个定值为;推广到空间,棱长为的正四面体内任一点到各面距离之和为___________________.

查看答案和解析>>

同步练习册答案