精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系xOy中,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系;曲线C1的普通方程为(x-1)2 +y2 =1,曲线C2的参数方程为θ为参数).

(Ⅰ)求曲线C1C2的极坐标方程:

(Ⅱ)设射线θ=(ρ>0)分别与曲线C1C2相交于AB两点,求|AB|的值.

【答案】(Ⅰ);(Ⅱ)

【解析】

(Ⅰ)根据,可得曲线C1的极坐标方程,然后先计算曲线C2的普通方程,最后根据极坐标与直角坐标的转化公式,可得结果.

(Ⅱ)将射线θ=分别与曲线C1C2极坐标方程联立,可得AB的极坐标,然后简单计算,可得结果.

(Ⅰ)

所以曲线的极坐标方程为

曲线的普通方程为

则曲线的极坐标方程为

(Ⅱ)令,则

,即

所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知等差数列的公差不为零,且成等比数列,数列满足

1)求数列的通项公式;

2)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题共13分)已知函数 的最小正周期为

)求的值;

)求函数的单调区间及其图象的对称轴方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若函数有且只有一个零点,求实数的取值范围;

2)若函数恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,点E是正方体ABCD-A1B1C1D1的棱DD1的中点,点FM分别在线段ACBD1(不包含端点)上运动,则(

A.在点F的运动过程中,存在EF//BC1

B.在点M的运动过程中,不存在B1MAE

C.四面体EMAC的体积为定值

D.四面体FA1C1B的体积不为定值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区为了调查高粱的高度、粒的颜色与产量的关系,对700棵高粱进行抽样调查,得到高度频数分布表如下:

1:红粒高粱频数分布表

农作物高度(

频数

2

5

14

13

4

2

2:白粒高粱频数分布表

农作物高度(

频数

1

7

12

6

3

1

1)估计这700棵高粱中红粒高粱的棵数;画出这700棵高粱中红粒高粱的频率分布直方图;

2)①估计这700棵高粱中高粱高(cm)在的概率;②在红粒高粱中,从高度(单位:cm)在中任选3棵,设表示所选3棵中高(单位:cm)在的棵数,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】冠状病毒是一个大型病毒家族,己知可引起感冒以及中东呼吸综合征()和严重急性呼吸综合征()等较严重疾病.而今年出现在湖北武汉的新型冠状病毒()是以前从未在人体中发现的冠状病毒新毒株.人感染了新型冠状病毒后常见体征有呼吸道症状、发热、咳嗽、气促和呼吸困难等.在较严重病例中,感染可导致肺炎、严重急性呼吸综合征、肾衰竭,甚至死亡.

某医院为筛查冠状病毒,需要检验血液是否为阳性,现有n)份血液样本,有以下两种检验方式:

方式一:逐份检验,则需要检验n.

方式二:混合检验,将其中k)份血液样本分别取样混合在一起检验.

若检验结果为阴性,这k份的血液全为阴性,因而这k份血液样本只要检验一次就够了,如果检验结果为阳性,为了明确这k份血液究竟哪几份为阳性,就要对这k份再逐份检验,此时这k份血液的检验次数总共为.

假设在接受检验的血液样本中,每份样本的检验结果是阳性还是阴性都是独立的,且每份样本是阳性结果的概率为p.现取其中k)份血液样本,记采用逐份检验方式,样本需要检验的总次数为,采用混合检验方式,样本需要检验的总次数为.

1)若,试求p关于k的函数关系式

2)若p与干扰素计量相关,其中)是不同的正实数,

满足)都有成立.

i)求证:数列等比数列;

ii)当时,采用混合检验方式可以使得样本需要检验的总次数的期望值比逐份检验的总次数的期望值更少,求k的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面为直角梯形,,过点作平面平行于平面,平面与棱分别相交于点.

(1)求的长度;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在平行四边形中,,以对角线为折痕把折起,使点到图2所示点的位置,使得.

(Ⅰ)求证:平面平面

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

同步练习册答案