精英家教网 > 高中数学 > 题目详情
18.设i为虚数单位,则复数i2015的共轭复数为i.

分析 根据复数i的幂运算性质进行求解即可得答案.

解答 解:i2015=(i4503•i3=-i,
∴它的共轭复数为i.
故答案为:i.

点评 本题主要考查复数i的幂运算性质,考查了复数的基本概念,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.若函数f(x)=$\frac{2x}{{x}^{2}+4}$在区间(a,2a+1)上单调递增,则实数a的取值范围是(  )
A.(-1,$\frac{1}{2}$]B.[-2,$\frac{1}{2}$]C.[-1,0]D.[-1,$\frac{1}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<$\frac{π}{2}}$)的图象经过三点(0,$\frac{1}{8}}$),(${\frac{5π}{12}$,0),(${\frac{11π}{12}$,0),且在区间($\frac{5π}{12}$,$\frac{11π}{12}}$)内有唯一的最值,且为最小值.
(1)求出函数f(x)=Asin(ωx+φ)的解析式;
(2)在△ABC中,a,b,c分别是角A、B、C的对边,若f($\frac{A}{2}}$)=$\frac{1}{4}$且bc=1,b+c=3,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知△ABC中,角A,B,C的对边分别是a,b,c,且2cos2$\frac{B}{2}$=$\sqrt{3}$sinB,a=3c.
(1)求角B的大小和tanC的值;
(2)若b=1,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.执行如图所示程序框图,若输出s的值为10,则判断框中填入的条件可以是(  )
A.i<10?B.i≤10?C.i≤11?D.i≤12?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图所示的多面体中,已知菱形ABCD和直角梯形ACEF所在的平面互相垂直,其中∠FAC为直角,∠ABC=60°,EF∥AC,EF=$\frac{1}{2}$AB=1,FA=$\sqrt{3}$.
(1)求证:DE⊥平面BEF;
(2)求多面体ABCDEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.抛物线y2=4x的焦点为F,A为抛物线上在第一象限内的一点,以点F为圆心,1为半径的圆与线段AF的交点为B,点A在y轴上的射影为点N,且|ON|=2$\sqrt{3}$,则线段NB的长度是3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知集合A={0,1},B={1,2,3},则A∪B=(  )
A.{1}B.{0,2,3}C.{0,1,2,3}D.{1,2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知向量$\overrightarrow{a}$=(sinωx,2$\sqrt{3}$sinωx-cosωx),$\overrightarrow{b}$=(sinωx,cosωx),若函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$-λ的图象关于直线x=π对称,其中ω,λ为常数,且ω∈($\frac{1}{2}$,1).
(2)求函数f(x)的最小正周期;
(2)当λ=1时,若x∈[0,$\frac{π}{2}$],求f(x)的最大值和最小值,并求相应的x值;
(3)当x∈[0,$\frac{3π}{5}$],函数f(x)有两个零点,求实数λ的取值范围.

查看答案和解析>>

同步练习册答案