精英家教网 > 高中数学 > 题目详情

设椭圆的焦点在y轴上,a∈{1,2,3,4,5},b∈{1,2,3,4,5,6,7},则这样的椭圆的个数是                                                        (    )

  (A)70                 (B)35              (C)30              (D)20

 

【答案】

D

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C:x2+
y2
m
=1
的焦点在y轴上,且离心率为
3
2
.过点M(0,3)的直线l与椭圆C相交于两点A、B.
(1)求椭圆C的方程;
(2)设P为椭圆上一点,且满足
OA
+
OB
OP
(O为坐标原点),当|
PA
|-|
PB
|<
3
时,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的对称轴为坐标轴,且短轴长为4,离心率为
3
2

(Ⅰ)求椭圆C的方程;
(Ⅱ)设椭圆C的焦点在y轴上,斜率为1的直线l与C相交于A,B两点,且|AB|=
16
5
2
,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•通州区一模)已知椭圆C的焦点在y轴上,离心率为
2
2
,且短轴的一个端点到下焦点F的距离是
2

(I)求椭圆C的标准方程;
(II)设直线y=-2与y轴交于点P,过点F的直线l交椭圆C于A,B两点,求△PAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源:2013年普通高等学校招生全国统一考试安徽卷理数 题型:044

设椭圆的焦点在x轴上

(Ⅰ)若椭圆E的焦距为1,求椭圆E的方程;

(Ⅱ)设F1,F2分别是椭圆的左、右焦点,P为椭圆E上的第一象限内的点,直线F2P交y轴与点Q,并且F1P⊥F1Q,证明:当a变化时,点p在某定直线上.

查看答案和解析>>

同步练习册答案