精英家教网 > 高中数学 > 题目详情
已知A、B是椭圆长轴的两个端点,M,N是椭圆上关于x轴对称的两点,直线AM,BN的斜率分别为k1,k2,且的最小值为1,则椭圆的离心率(   )
A.   B. C. D.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆)的两个焦点分别为,点P在椭圆上,且满足,直线与圆相切,与椭圆相交于A,B两点.
(Ⅰ)求椭圆的方程;
(Ⅱ)证明为定值(O为坐标原点)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭园为长轴的一个端点,弦过椭圆的中心,且,则其短轴长为   (   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

椭圆的中心为坐标原点,焦点在轴上,焦点到相应准线的距离以及离心率均为,直线轴交于点,与椭圆交于相异两点,且
(1)求椭圆方程;    
(2)若,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
已知椭圆的长轴长是短轴长的倍,是左,右焦点.
(1)若,且,求的坐标;
(2)在(1)的条件下,过动点作以为圆心、以1为半径的圆的切线是切点),且使,求动点的轨迹方程

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知椭圆的中心在坐标原点,焦点在轴上,椭圆的短轴端点和焦点所组成的四边形为正方形,短轴长为2.
(1)求椭圆的方程;
(2)设直线且与椭圆相交于A,B两点,当P是AB的中点时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆(a>b>0)的离心率, 直线与椭圆交于P,Q两点, 且OP⊥OQ(如图) .
(1)求证:
(2)求这个椭圆方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)已知焦点在x轴上,中心在坐标原点的椭圆C的离心率为,且过点.
(I)求椭圆C的方程;
(II)直线分别切椭圆C与圆(其中3<R<5)于A、B两点,求|AB|   的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知椭圆的上项点为B1,右、右焦点为F1、F2是面积为的等边三角形。
(I)求椭圆C的方程;
(II)已知是以线段F1F2为直径的圆上一点,且,求过P点与该圆相切的直线的方程;
(III)若直线与椭圆交于A、B两点,设的重心分别为G、H,请问原点O在以线段GH为直径的圆内吗?若在请说明理由。

查看答案和解析>>

同步练习册答案