精英家教网 > 高中数学 > 题目详情

【题目】某公司培训员工某项技能,培训有如下两种方式:

方式一:周一到周五每天培训1小时,周日测试

方式二:周六一天培训4小时,周日测试

公司有多个班组,每个班组60人,现任选两组记为甲组、乙组先培训;甲组选方式一,乙组选方式二,并记录每周培训后测试达标的人数如表:

第一周

第二周

第三周

第四周

甲组

20

25

10

5

乙组

8

16

20

16

用方式一与方式二进行培训,分别估计员工受训的平均时间精确到,并据此判断哪种培训方式效率更高?

在甲乙两组中,从第三周培训后达标的员工中采用分层抽样的方法抽取6人,再从这6人中随机抽取2人,求这2人中至少有1人来自甲组的概率.

【答案】(1)方式一(2

【解析】

(1)用总的受训时间除以,得到平均受训时间.由此判断出方式一效率更高.(2)利用分层抽样的知识,计算得来自甲组人,乙组.再利用列举法求得“从这人中随机抽取人,求这人中至少有人来自甲组的概率”.

解:(1)设甲乙两组员工受训的平均时间分别为,则

(小时)

(小时)

据此可估计用方式一与方式二培训,员工受训的平均时间分别为10小时和10.9小时,因,据此可判断培训方式一比方式二效率更高;

(2)从第三周培训后达标的员工中采用分层抽样的方法抽取6人,

则这6人中来自甲组的人数为:

来自乙组的人数为:

记来自甲组的2人为:;来自乙组的4人为:,则从这6人中随机抽取

2人的不同方法数有:,共15种,

其中至少有1人来自甲组的有:

共9种,故所求的概率.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】不等式组表示的平面区域为D的最大值等于8.

1)求的值;

2)求的取值范围;

3)若直线过点P(-3,3),求区域D在直线上的投影的长度的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某基地蔬菜大棚采用无土栽培方式种植各类蔬菜.根据过去50周的资料显示,该基地周光照量(小时)都在30小时以上,其中不足50小时的有5周,不低于50小时且不超过70小时的有35周,超过70小时的有10周.根据统计,该基地的西红柿增加量(千克)与使用某种液体肥料的质量(千克)之间的关系如图所示.

(1)依据上图,是否可用线性回归模型拟合的关系?请计算相关系数并加以说明(精确到0.01).(若,则线性相关程度很高,可用线性回归模型拟合)

(2)蔬菜大棚对光照要求较大,某光照控制仪商家为该基地提供了部分光照控制仪,但每周光照控制仪运行台数受周光照量限制,并有如下关系:

周光照量(单位:小时)

光照控制仪运行台数

3

2

1

若某台光照控制仪运行,则该台光照控制仪周利润为3000元;若某台光照控制仪未运行,则该台光照控制仪周亏损1000元.以频率作为概率,商家欲使周总利润的均值达到最大,应安装光照控制仪多少台?

附:相关系数公式

参考数据:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知一个袋子里有形状一样仅颜色不同的6个小球,其中白球2个,黑球4现从中随机取球,每次只取一球.

若每次取球后都放回袋中,求事件“连续取球四次,至少取得两次白球”的概率;

若每次取球后都不放回袋中,且规定取完所有白球或取球次数达到五次就终止游戏,记游戏结束时一共取球X次,求随机变量X的分布列与期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解人们对于国家新颁布的“生育二胎放开”政策的热度,现在某市进行调查,随机调查了人,他们年龄的频数分布及支持“生育二胎”人数如下表:

年龄

[5,15)

[15,25)

[25,35)

[35,45)

[45,55)

[55,65)

频数

5

10

15

10

5

5

支持“生

育二胎”

4

5

12

8

2

1

(1)由以上统计数据填下面2乘2列联表,并问是否有99的把握认为以45岁为分界点对“生育二胎放开”政策的支持度有差异:

年龄不低于45岁的人数

年龄低于45岁的人数

合计

支持

a=

c=

不支持

b=

d=

合计

(2)若对年龄在的被调查人中随机选取两人进行调查,恰好这两人都支持“生育二胎放开”的概率是多少?

参考数据:P

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】运输公司年有万辆公交车,计划年投入辆新型号公交车,以后每年投入的新型号公交车数量均比上年增加.

1年应投入多少辆新型号公交车?

2)从年到年间共投入多少辆新型号公交车?

3)从哪一年开始,该公司新型号公交车总量超过该公司公交车总量的

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】教材中指出:当很小,不太大时,可以用表示的近似值,即 1),我们把近似值与实际值之差除以实际值的商的绝对值称为相对近似误差,一般用字母表示,即相对近似误差

1)利用(1)求出的近似值,并指出其相对近似误差(相对近似误差保留两位有效数字)

2)若利用(1)式计算的近似值产生的相对近似误差不超过,求正实数的取值范围;

3)若利用(1)式计算的近似值产生的相对近似误差不超过,求正整数的最大值。(参考对数数值:)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆过点,且右焦点为

1)求椭圆的方程;

2)过点的直线与椭圆交于两点,交轴于点.若,求证:为定值;

3)在(2)的条件下,若点不在椭圆的内部,点是点关于原点的对称点,试求三角形面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,由半圆和部分抛物线合成的曲线称为“羽毛球开线”,曲线轴有两个焦点,且经过点

(1)的值;

(2)为曲线上的动点,求的最小值;

(3)且斜率为的直线羽毛球形线相交于点三点,问是否存在实数使得?若存在,求出的值;若不存在,请说明理由。

查看答案和解析>>

同步练习册答案