精英家教网 > 高中数学 > 题目详情
(2013•广州二模)已知正方形ABCD的边长为2,E、F、G、H分别是边AB、BC、CD、DA的中点.
(1)在正方形ABCD内部随机取一点P,求满足|PH|<
2
的概率;
(2)从A、B、C、D、E、F、G、H这八个点中,随机选取两个点,记这两个点之间的 距离为ξ,求随机变量ξ的分布列与数学期望Eξ.
分析:(1)根据几何概型的概率计算公式,分别求出正方形的面积和满足|PH|
2
的正方形内部的点P的集合”的面积即可得出;
(2)从A、B、C、D、E、F、G、H这八个点中,随机选取两个点,共可得到
C
2
8
=28
线段.这些线段的长度ξ的所有可能取值分别为1,
2
,2,
5
,2
2
,找出相应长度的线段条数,利用古典概型的概率计算公式即可得出.
解答:解:(1)如图所示,正方形的面积S正方形ABCD=2×2=4.
设“满足|PH|
2
的正方形内部的点P的集合”为事件M,
则S(M)=S△DGH+S△AEH+S扇形EGH=
1
2
×12+
1
2
×
2
×
π
2
×
2
=1+
π
2

∴P(M)=
1+
π
2
4
=
π
8
+
1
4

故满足|PH|<
2
的概率为
π
8
+
1
4

(2)从A、B、C、D、E、F、G、H这八个点中,随机选取两个点,共可得到
C
2
8
=28
线段.
其中长度等于1的有8条:AE、EB、BF、FC、CG、GD、DH、HA;长度等于
2
的由4条:EF、FG、GH、HE;长度等于2的有6条:AB、BC、CD、DA、EG、
FH;长度等于
5
的有8条,AF、AG、BG、BH、CE、CH、DE、DF;长度等于2
2
的由2条AC、BD.
∴ξ的所有可能的取值为1,
2
,2,
5
2
2

则P(ξ=1)=
8
28
=
2
7
,P(ξ=
2
)=
4
28
=
1
7
,P(ξ=2)=
6
28
=
3
14
,P(ξ=
5
)=
8
28
=
2
7
,P(ξ=2
2
)=
2
28
=
1
14

随机变量ξ的分布列为

Eξ=
2
7
+
2
×
1
7
+2×
3
14
+
5
×
2
7
+2
2
×
1
14
=
5+2
2
+2
5
7
点评:本题考查了利用古典概型的概率计算公式求几何概率及其分布列和数学期望,正确求出试验的全部结果所构成的区域的面积和长度以及要求的事件的区域的面积和长度是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•广州二模)如果函数f(x)=ln(-2x+a)的定义域为(-∞,1),则实数a的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广州二模)(几何证明选讲选做题)
在△BC中,D是边AC的中点,点E在线段BD上,且满足BE=
1
3
BD,延长AE交 BC于点F,则
BF
FC
的值为
1
4
1
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广州二模)直线y=k(x+1)与圆(x+1)2+y2=1相交于A,B两点,则|AB|的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广州二模)在等差数列{an}中,a1+a2=5,a3=7,记数列{
1anan+1
}的前n项和为Sn
(1)求数列{an}的通项公式;
(2)是否存在正整数m、n,且1<m<n,使得S1、SntSn成等比数列?若存在,求出所有符合条件的m,n值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广州二模)设an是函数f(x)=x3+n2x-1(n∈N+)的零点.
(1)证明:0<an<1;
(2)证明:
n
n+1
a1+a2+…+an
3
2

查看答案和解析>>

同步练习册答案