分析 (I)运用代入法,可得曲线C1的普通方程,由ρ2=x2+y2,x=ρcosθ,y=ρsinθ,即可得到曲线C2的直角坐标方程;
(Ⅱ)求得圆C2的圆心和半径,求得圆心到直线的距离,判断直线和圆相交,运用弦长公式计算即可得到弦长.
解答 解:(I)曲线C1的参数方程为$\left\{\begin{array}{l}{x=2+t}\\{y=1+t}\end{array}\right.$(t为参数),
消去t,可得y=x-1;
曲线C2的极坐标方程化为 ρ=2cosθ+6sinθ,
即有ρ2=2ρcosθ+6ρsinθ,
即有x2+y2-2x-6y=0;
(Ⅱ)曲线C2表示圆心为(1,3),半径为$\sqrt{10}$的圆,
由圆心到直线的距离d=$\frac{|1-1-3|}{\sqrt{2}}$=$\frac{3\sqrt{2}}{2}$<$\sqrt{10}$,
则曲线C1,C2相交,
弦长为2$\sqrt{{r}^{2}-{d}^{2}}$=2$\sqrt{10-\frac{9}{2}}$=$\sqrt{22}$.
点评 本题考查参数方程、极坐标方程和普通方程的互化,考查直线和圆的位置关系,以及弦长公式的运用,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | B. | C. | D. |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 在空间,如果一个角的两边与另一个角的两边分别平行,那么这两个角相等 | |
B. | 分别和两条异面直线都相交的两条直线可能是相交直线 | |
C. | 若直线a在平面α外,则直线a与平面α内的所有直线都没有公共点 | |
D. | 若直线a上有两点到平面α的距离为1,则a∥α |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com