精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,以坐标原点为极点, 轴的非负半轴为极轴建立极坐标系,圆的极坐标方程为.

(1)求出圆的直角坐标方程;

(2)已知圆轴相交于 两点,直线 关于点对称的直线为.若直线上存在点使得,求实数的最大值.

【答案】(1)的标准方程为;(2).

【解析】试题分析:(1)利用极值互化公式,可得的标准方程为.

(2)由题可得是直线和以为直径的圆的公共点,转化为直线与圆有公共点求解.

试题解析:(1)由,即,即圆的标准方程为.

(2) 关于点的对称直线的方程为,而为圆的直径,故直线上存在点使得的充要条件是直线与圆有公共点,故,于是,实数的最大值为.

点晴:本题考查的是极值互化和直线与圆的位置关系.极值互化时要记清公式,第二问中用了转化与化归思想, 说明点在以为直径的圆上,同时直线上存在点,所以是直线和以为直径的圆的公共点,即转化为直线与圆有公共点,所以,即,得解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,已知三棱柱中,

(1)求证:

(2)若 ,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】全世界越来越关注环境保护问题,某省一监测站点于2016年8月某日起连续天监测空气质量指数,数据统计如下:

(Ⅰ)根据所给统计表和频率分布直方图中的信息求出的值,并完成频率分布直方图;

(Ⅱ)在空气质量指数分别为的监测数据中,用分层抽样的方法抽取5天,从中任意选取2天,求事件 “两天空气都为良”发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,其中为自然对数的底数.

(Ⅰ)若曲线轴上的截距为-1,且在点处的切线垂直于直线,求实数的值;

(Ⅱ)记的导函数为 在区间上的最小值为,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】几何体三视图如图所示,其中俯视图为边长为的等边三角形,则此几何体的体积为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在党的群众教育路线总结阶段,一督导组从某单位随机抽调25名员工,让他们对单位的各项开展工作进行打分评价,现获得如下数据:70,82,81,76,84,80,77,77,65,85,69,83,71,76,89,74,73,83,78,82,72,74,86,79,76.

(1)根据上述数据完成样本的频率分布表;

(2)根据(1)的频率分布表,完成样本分布直方图;

(3)从区间中任意抽取两个评分,求两个评分来自不同区间的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】袋中装有编号分别为1,2,3,…,2n个小球,现将袋中的小球分给三个盒子,每次从袋中任意取出两个小球,将其中一个放入A盒子,如果这个小球的编号是奇数,就将另一个放入盒子,否则就放入盒子,重复上述操作,直到所有小球都被放入盒中,则下列说法一定正确的是

A. 盒中编号为奇数的小球与盒中编号为偶数的小球一样多

B. 盒中编号为偶数的小球不多于盒中编号为偶数的小球

C. 盒中编号为偶数的小球与C盒中编号为奇数的小球一样多

D. B盒中编号为奇数的小球多于C盒中编号为奇数的小球

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校举行汉字听写比赛,为了了解本次比赛成绩情况,从得分不低于50分的试卷中随机抽取100名学生的成绩(得分均为整数,满分100分)进行统计,请根据频率分布表中所提供的数据,解答下列问题:

组号

分组

频数

频率

第1组

[50,60)

5

0.05

第2组

[60,70)

0.35

第3组

[70,80)

30

第4组

[80,90)

20

0.20

第5组

[90,100]

10

0.10

合计

100

1.00

(Ⅰ)求的值;

(Ⅱ)若从成绩较好的第3、4、5组中按分层抽样的方法抽取6人参加市汉字听写比赛,并从中选出2人做种子选手,求2人中至少有1人是第4组的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知椭圆),圆),若圆的一条切线与椭圆相交于两点.

(1)当 时,若点都在坐标轴的正半轴上,求椭圆的方程;

(2)若以为直径的圆经过坐标原点,探究之间的等量关系,并说明理由.

查看答案和解析>>

同步练习册答案