精英家教网 > 高中数学 > 题目详情
已知椭圆 过定点A(1,0),且焦点在x轴上,椭圆与曲线|y|=x的交点为B、C.现有以A为焦点,过B,C且开口向左的抛物线,其顶点坐标为M(m,0),当椭圆的离心率满足 时,求实数m的取值范围.
【答案】分析:由椭圆过定点A(1,0),知,由,知.由对称性知,所求抛物线只要过椭圆与射线y=x(x≥0)的交点,就必过椭圆与射线y=-x(x≥0)的交点.由此能求出实数m的取值范围.
解答:解:∵椭圆 过定点A(1,0),

,∴

由对称性知,所求抛物线只要过椭圆与射线y=x(x≥0)的交点,就必过椭圆与射线y=-x(x≥0)的交点.
联立方程 
解得 


设抛物线方程为:y2=-2p(x-m),p>0,m>1.

∴y2=(1-m)(x-m)①
把 y=x,代入①,
得x2+4(m-1)x-4m(m-1)=0,m>1.
令f(x)=x2+4(m-1)x-4m(m-1),m>1,
∵f(x)在内有根且单调递增,


综上得实数m的取值范围:{m|}.
点评:本题考查直线和椭圆的位置关系的综合应用,考查运算求解能力,推理论证能力;考查化归与转化思想.综合性强,难度大,有一定的探索性,对数学思维能力要求较高,是高考的重点.解题时要认真审题,仔细解答.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(08年黄冈中学一模文)   (14分)已知椭圆过定点A(1,0),焦点在x轴上,且离心率e满足

(I)求的取值范围;

(II)若椭圆与的交于点B,求点B的横坐标的取值范围;

(Ⅲ)在条件(II)下,现有以A为焦点,过点B且开口向左的抛物线,抛物线的顶点坐标为M(m,0),求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分20分)已知椭圆+=1(a>b>0)的离心率e=,过点A(0,-b)和B(a,0)的直线与原点的距离为.

(1)求椭圆的方程;

(2)已知定点E(-2,0),直线y=kx+t与椭圆交于C、D两点,证明:对任意的t>0,都存在k ,使得以线段CD为直径的圆过E点. w.w.w.k

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C(ab>0)的左准线恰为抛物线Ey2 = 16x的准线,直线lx + 2y – 4 = 0与椭圆相切.(1)求椭圆C的方程;(2)如果椭圆C的左顶点为A,右焦点为F,过F的直线与椭圆C交于P、Q两点,直线APAQ与椭圆C的右准线分别交于N、M两点,求证:四边形MNPQ的对角线的交点是定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆过定点A(1,0),且焦点在x轴上,椭圆与曲线|y|=x的交点为B、C。现有以A为焦点,过点B、C且开口向左的抛物线,抛物线的顶点坐标为M(m,0)。当椭圆的离心率e满足时,求实数m的取值范围。

查看答案和解析>>

同步练习册答案