精英家教网 > 高中数学 > 题目详情

P为椭圆+=1(a>b>0)上的任意一点,F1为椭圆的一个焦点,|PF1|的取值范围为     .

 

[a-,a+]

【解析】F2为椭圆的另一焦点,连接PF2,则由椭圆的定义得|PF1|+|PF2|=2a,c2=a2-b2(c>0).因为||PF1|-|PF2||2c.所以-2c|PF1|-|PF2|2c,所以2a-2c2|PF1|2a+2c,a-c|PF1|a+c,所以|PF1|的最大值为a+c,a+,最小值为a-c,a-.

 

练习册系列答案
相关习题

科目:高中数学 来源:2014年高考数学全程总复习课时提升作业五十四第八章第五节练习卷(解析版) 题型:填空题

在平面直角坐标系xOy,椭圆C的中心为原点,焦点F1,F2x轴上,离心率为.F1的直线lCA,B两点,且△ABF2的周长为16,那么C的方程为      .

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学全程总复习课时提升作业五十五第八章第六节练习卷(解析版) 题型:选择题

已知双曲线-=1(a>0,b>0)的一条渐近线方程为y=x,则双曲线的离心率为(  )

(A) (B) (C) (D)

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学全程总复习课时提升作业五十二第八章第三节练习卷(解析版) 题型:选择题

在同一坐标系下,直线ax+by=ab和圆(x-a)2+(y-b)2=r2(ab0,r>0)的图象可能是(  )

 

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学全程总复习课时提升作业五十九第八章第十节练习卷(解析版) 题型:解答题

给定椭圆C:+=1(a>b>0),称圆心在原点O,半径为的圆是椭圆C的“准圆”.若椭圆C的一个焦点为F(,0),其短轴上的一个端点到F的距离为.

(1)求椭圆C的方程和其“准圆”的方程.

(2)P是椭圆C的“准圆”上的一个动点,过动点P作直线l1,l2使得l1,l2与椭圆C都只有一个交点,l1,l2分别交其“准圆”于点M,N.

①当P为“准圆”与y轴正半轴的交点时,l1,l2的方程;

②求证:|MN|为定值.

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学全程总复习课时提升作业五十九第八章第十节练习卷(解析版) 题型:选择题

M(x0,y0)为抛物线C:y2=8x上一点,F为抛物线C的焦点,若以F为圆心,|FM|为半径的圆和抛物线C的准线相交,x0的取值范围是(  )

(A)(2,+) (B)(4,+)

(C)(0,2) (D)(0,4)

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学全程总复习课时提升作业五十三第八章第四节练习卷(解析版) 题型:填空题

与直线l:x+y-2=0和曲线x2+y2-12x-12y+54=0都相切的半径最小的圆的标准方程是    .

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学全程总复习课时提升作业五十七第八章第八节练习卷(解析版) 题型:选择题

已知双曲线-y2=1(a>1)的一条准线为x=,则该双曲线的离心率为(  )

(A) (B) (C) (D)

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学全程总复习课时提升作业二十四第三章第八节练习卷(解析版) 题型:填空题

某人站在60米高的楼顶A处测量不可到达的电视塔的高度,测得塔顶C的仰角为30°,塔底B的俯角为15°,已知楼底部D和电视塔的底部B在同一水平面上,则电视塔的高为  .

 

查看答案和解析>>

同步练习册答案