精英家教网 > 高中数学 > 题目详情

【题目】对于函数,若,则称的“不动点”;若,则称的“稳定点”.函数的“不动点”和“稳定点”的集合分别记为,即

)设函数,求集合

)求证:

)设函数,且,求证:

【答案】;(证明见解析;(证明见解析

【解析】

)由,解得;由,解得,,;(,则成立;若,设中任意一个元素,则有可得,故从而可得结果;①当时,的图象在轴的上方,可得对于恒成立,则.②当时,的图象在轴的下方,可得对于任意恒成立,则

)由

解得

,得

解得

)若

成立,

中任意一个元素,

则有

)由,得方程无实数解,

①当时,的图象在轴的上方,

所以任意恒成立,

即对于任意恒成立,

对于,则有成立,

∴对于恒成立,

②当时,的图象在轴的下方,

所以任意恒成立,

即对于恒成立,

对于实数,则有成立,

所以对于任意恒成立,

综上知,对于

时,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知双曲线的顶点与焦点分别是椭圆的焦点与顶点,若双曲线的两条渐近线与椭圆的交点构成的四边形恰为正方形,则椭圆的离心率为(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设等差数列{an}的公差d>0,前n项和为Sn , 已知3 是﹣a2与a9的等比中项,S10=﹣20.
(1)求数列{an}的通项公式;
(2)设bn= ,求数列{bn}的前n项和Tn(n≥6).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某学校高三年级共800名男生中随机抽取50名测量身高,测量发现被测学生身高全部介于155cm和195cm之间,将测量结果按如下方式分成八组:第一组[155,160);第二组[160,165)、…、第八组[190,195],下图是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数相同,第六组、第七组、第八组人数依次构成等差数列.

(1)估计这所学校高三年级全体男生身高180cm以上(含180cm)的人数;


2)求第六组、第七组的频率并补充完整频率分布直方图(如需增加刻度请在纵轴上标记出数据,并用直尺作图);

(3)由直方图估计男生身高的中位数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一动圆与圆外切,与圆内切.

(1)求动圆圆心的轨迹的方程.

(2)设过圆心的直线与轨迹相交于两点,为圆的圆心)的内切圆的面积是否存在最大值?若存在,求出这个最大值及直线的方程,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线,直线交此抛物线于不同的两个点

)当直线过点时,证明为定值.

)当时,直线是否过定点?若过定点,求出定点坐标;反之,请说明理由.

)记,如果直线过点,设线段的中点为,线段的中点为.问是否存在一条直线和一个定点,使得点到它们的距离相等?若存在,求出这条直线和这个定点;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是方程的两根, 数列是公差为正的等差数列,数列的前项和为,且.

(1)求数列的通项公式

(2)记,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于n∈N* , 若数列{xn}满足xn+1﹣xn>1,则称这个数列为“K数列”.
(Ⅰ)已知数列:1,m+1,m2是“K数列”,求实数m的取值范围;
(Ⅱ)是否存在首项为﹣1的等差数列{an}为“K数列”,且其前n项和Sn满足 ?若存在,求出{an}的通项公式;若不存在,请说明理由;
(Ⅲ)已知各项均为正整数的等比数列{an}是“K数列”,数列 不是“K数列”,若 ,试判断数列{bn}是否为“K数列”,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某职称晋级评定机构对参加某次专业技术考试的100人的成绩进行了统计,绘制了频率分布直方图(如图所示).规定80分及以上者晋级成功,否则晋级失败(满分100分).
(1)求图中a的值;
(2)根据已知条件完成下面2×2列联表,并判断能否有85%的把握认为“晋级成功”与性别有关?

晋级成功

晋级失败

合计

16

50

合计

(参考公式:K2= ,其中n=a+b+c+d)

P(K2≥k)

0.40

0.25

0.15

0.10

0.05

0.025

k

0.780

1.323

2.072

2.706

3.841

5.024


(3)将频率视为概率,从本次考试的所有人员中,随机抽取4人进行约谈,记这4人中晋级失败的人数为X,求X的分布列与数学期望E(X).

查看答案和解析>>

同步练习册答案