精英家教网 > 高中数学 > 题目详情
已知抛物线y2=2px(p>0)的焦点为F,P、Q是抛物线上的两个点,若△PQF是边长为2的正三角形,则p的值是________.
p=2±
依题意得F,设P,Q(y1≠y2).由抛物线定义及PF=QF,得,所以,所以y1=-y2.又PQ=2,因此|y1|=|y2|=1,点P.又点P位于该抛物线上,于是由抛物线的定义得PF==2,由此解得p=2±.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知抛物线
(1)若圆心在抛物线上的动圆,大小随位置而变化,但总是与直线相切,求所有的圆都经过的定点坐标;
(2)抛物线的焦点为,若过点的直线与抛物线相交于两点,若,求直线的斜率;
(3)若过正半轴上点的直线与该抛物线交于两点,为抛物线上异于的任意一点,记连线的斜率为试求满足成等差数列的充要条件.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知圆C与两圆x2+(y+4)2=1,x2+(y-2)2=1外切,圆C的圆心轨迹方程为L,设L上的点与点M(x,y)的距离的最小值为m,点F(0,1)与点M(x,y)的距离为n.
(1)求圆C的圆心轨迹L的方程.
(2)求满足条件m=n的点M的轨迹Q的方程.
(3)在(2)的条件下,试探究轨迹Q上是否存在点B(x1,y1),使得过点B的切线与两坐标轴围成的三角形的面积等于.若存在,请求出点B的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

抛物线的焦点坐标是(     )
A.B.C.(0,1)D.(1,0)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线 (k>0)与抛物线相交于AB两点,的焦点,若,则k的值为
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设抛物线y2=8x的准线与x轴交于点Q,若过点Q的直线l与抛物线有公共点,则直线l的斜率的取值范围是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系xOy中,抛物线C的顶点在原点,经过点A(2,2),其焦点F在x轴上.

(1)求抛物线C的标准方程;
(2)求过点F,且与直线OA垂直的直线的方程;
(3)设过点M(m,0)(m>0)的直线交抛物线C于D、E两点,ME=2DM,记D和E两点间的距离为f(m),求f(m)关于m的表达式.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知F是抛物线的焦点,A,B是该抛物线上的两点,,则线段AB的中点到y轴的距离为 (  )
A.B.1C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知抛物线的焦点坐标是(0,-3),则抛物线的标准方程是________.

查看答案和解析>>

同步练习册答案