精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x3+ax2-2x+5在上单调递减,在(1,+∞)上单调递增,且函数f(x)的导数记为f'(x),则下列结论正确的是    .(填序号)
是方程f'(x)=0的根;②1是方程f'(x)=0的根;③有极小值f(1);④有极大值; ⑤
【答案】分析:对函数求导可得,f′(x)=3x2+2ax-2,由题意可得f′(1)=0,则可得a=-可判断⑤
,f′(x)=3x2-x-2=(3x+2)(x-1)可判断①②
由函数f(x)=x3+ax2-2x+5在上单调递减,在(1,+∞)上单调递增,可判断③
由函数f(x)=x3+ax2-2x+5在上单调递减,在(1,+∞),上单调递增可判断④
解答:解:∵f′(x)=3x2+2ax-2
由函数f(x)=x3+ax2-2x+5在上单调递减,在(1,+∞)上单调递增
可知f′(1)=0即2a+1=0
∴a=-
,f′(x)=3x2-x-2=(3x+2)(x-1)
①x=-是方程的根,正确
②x=1是方程的根,正确
③由函数f(x)=x3+ax2-2x+5在上单调递减,在(1,+∞)上单调递增,可知x=1是函数的极小值,③正确
④令f′(x)=3x2-x-2=(3x+2)(x-1)>0,可得
f′(x)=3x2-x-2=(3x+2)(x-1)<0可得,
则函数f(x)=x3+ax2-2x+5在上单调递减,在(1,+∞),上单调递增,故为函数的极大值,④正确
⑤正确
故答案为:①②③④⑤
点评:本题主要考查了利用函数的导数求解函数的单调区间、函数的极大与及小值,及函数的极值与导数对应的方程的根的关系的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案