已知函数.
(1)当时,求函数的单调递增区间;
(2)设的内角的对应边分别为,且若向量与向量共线,求的值.
(1) ;(2)
【解析】
试题分析:(1)因为函数所以通过二倍角公式及三角函数的化一公式,将函数化简,再通过正弦函数的单调递增区间公式,将化简得到变量代入相应的x的位置即可求出函数的单调递增区间,从而调整k的值即可得到结论.
(2)由(1)可得函数的解析式,再由即可求得角C的值.在根据向量共线即可求得一个等式,再根据正弦定理以及余弦定理,即可求得相应的结论.
试题解析:(I)==
令,
解得即
,f(x)的递增区间为
(2)由,得
而,所以,所以得
因为向量与向量共线,所以,
由正弦定理得: ①
由余弦定理得:,即a2+b2-ab=9 ②
由①②解得
考点:1.二倍角公式.2.化一公式.3.三角函数的单调性.4.解三角形.
科目:高中数学 来源:2011-2012学年海南省高考压轴卷文科数学试卷(解析版) 题型:解答题
(本小题满分10分)选修4-5:不等式选讲
已知函数.
(1)当时,求函数的定义域;
(2)若关于的不等式的解集是,求的取值范围.
查看答案和解析>>
科目:高中数学 来源:2013届河北省高二下学期期中文科数学试卷(解析版) 题型:解答题
(本小题12分)已知函数。
(1)当时,判断的单调性;
(2)若在其定义域内为增函数,求正实数的取值范围;
查看答案和解析>>
科目:高中数学 来源:2011-2012学年上海市宝山区高三上学期期末质量监测数学 题型:解答题
已知函数.
(1)当时,求满足的的取值范围;
(2)若的定义域为R,又是奇函数,求的解析式,判断其在R上的单调性并加以证明.
查看答案和解析>>
科目:高中数学 来源:2010-2011学年深圳市高三第一次调研考试数学理卷 题型:解答题
((本小题满分14分)
已知函数.
(1)当时,如果函数仅有一个零点,求实数的取值范围;
(2)当时,试比较与的大小;
(3)求证:().
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com