精英家教网 > 高中数学 > 题目详情
3.2${\;}^{lo{g}_{4}(\sqrt{3}+2)^{2}}$+3${\;}^{lo{g}_{9}(\sqrt{3}-2)^{2}}$=4.

分析 直接利用对数的运算法则化简求解即可.

解答 解:2${\;}^{lo{g}_{4}(\sqrt{3}+2)^{2}}$+3${\;}^{lo{g}_{9}(\sqrt{3}-2)^{2}}$
=2${\;}^{lo{g}_{4}(\sqrt{3}+2)^{2}}$+3${\;}^{lo{g}_{9}(\sqrt{3}-2)^{2}}$
=${2}^{{\;}^{lo{g}_{2}{(\sqrt{3}+2)}^{\;}}}$+${3}^{{\;}^{lo{g}_{3}{(2-\sqrt{3})}^{\;}}}$
=$\sqrt{3}+2$+2$-\sqrt{3}$
=4.
故答案为:4.

点评 本题考查对数的运算法则的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.在三角形ABC中,角A,B,C的对边分别为a,b,c,已知a=1,A=$\frac{π}{4}$,bsin($\frac{π}{4}$+C)=csin($\frac{π}{4}$+B)+1
(Ⅰ)求B,C的值
(Ⅱ)求三角形ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在△ABC中,AC=3,AB=4,BC=5,P为角平分线AT上一点,且在△ABC内部,则P到三边距离倒数之和的最小值为$\frac{19+2\sqrt{70}}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.求下列各式的值:
(1)(lg5)2+lg2•lg5+lg2+2${\;}^{lo{g}_{2}3}$.
(2)lg14-2lg$\frac{7}{3}$-lg18.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知1g2=0.3010,1g3=0.4771,lgx=-2+0.7781,则x=0.06.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.计算:2${\;}^{2+lo{g}_{2}3}$+3${\;}^{2-lo{g}_{3}9}$=13.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.求下列各式的值:
(1)($\root{3}{2}×\sqrt{3}$)6+($\sqrt{2\sqrt{2}}$)${\;}^{\frac{4}{3}}$-4×($\frac{16}{49}$)${\;}^{-\frac{1}{2}}$-$\root{4}{2}$×80.25+(-2015)0
(2)$\frac{1}{2}$lg$\frac{32}{49}$-$\frac{4}{3}$lg$\sqrt{8}$+lg$\sqrt{245}$+(lg2)•lg50+lg25.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知等差数列公差为d,且an≠0,d≠0,则$\frac{1}{{a}_{1}{a}_{2}}$+$\frac{1}{{a}_{2}{a}_{3}}$+…+$\frac{1}{{a}_{n}{a}_{n+1}}$可化简为(  )
A.$\frac{nd}{{a}_{1}({a}_{1}+nd)}$B.$\frac{n}{{a}_{1}({a}_{1}+nd)}$C.$\frac{d}{{a}_{1}({a}_{1}+nd)}$D.$\frac{n+1}{{a}_{1}[{a}_{1}+(n+1)d]}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.某工厂产值月平均增长率为P,求该工厂的年增长率为(1+p)11-1.

查看答案和解析>>

同步练习册答案