【题目】设函数f(x)=|2x+1|﹣|x﹣4|.
(1)解不等式f(x)>0;
(2)若f(x)+3|x﹣4|>m对一切实数x均成立,求m的取值范围.
【答案】
(1)
解:当x≥4时f(x)=2x+1﹣(x﹣4)=x+5>0得 x>﹣5,所以,x≥4时,不等式成立.
当 时,f(x)=2x+1+x﹣4=3x﹣3>0,得x>1,所以,1<x<4时,不等式成立.
当 时,f(x)=﹣x﹣5>0,得x<﹣5,所以,x<﹣5成立
综上,原不等式的解集为:{x|x>1或x<﹣5}
(2)
解:f(x)+3|x﹣4|=|2x+1|+2|x﹣4|≥|2x+1﹣(2x﹣8)|=9,当且仅当﹣ ≤x≤4时,取等号,
所以,f(x)+3|x﹣4|的最小值为9,故 m<9
【解析】(1)分类讨论,当x≥4时,当 时,当 时,分别求出不等式的解集,再把解集取交集.(2)利用绝对值的性质,求出f(x)+3|x﹣4|的最小值为9,故m<9.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知曲线: (为参数),在以原点为极点, 轴的非负半轴为极轴建立的极坐标系中,直线的极坐标方程为.
(1)求曲线的普通方程和直线的直角坐标方程;
(2)过点且与直线平行的直线交于, 两点,求点到, 两点的距离之积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设是一个非空集合, 是定义在上的一个运算.如果同时满足下述四个条件:
(1)对于,都有;
(2)对于,都有;
(3)对于,使得;
(4)对于,使得(注:“”同(iii)中的“”).
则称关于运算构成一个群.现给出下列集合和运算:
①是整数集合, 为加法;②是奇数集合, 为乘法;③是平面向量集合, 为数量积运算;④是非零复数集合, 为乘法. 其中关于运算构成群的序号是___________(将你认为正确的序号都写上).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了调查某高中学生每天的睡眠时间,现随机对20名男生和20名女生进行问卷调查,结果如下:
女生:
睡眠时间(小时) | [4,5) | [5,6) | [6,7) | [7,8) | [8,9] |
人数 | 2 | 4 | 8 | 4 | 2 |
男生:
睡眠时间(小时) | [4,5) | [5,6) | [6,7) | [7,8) | [8,9] |
人数 | 1 | 5 | 6 | 5 | 3 |
(1)现把睡眠时间不足5小时的定义为“严重睡眠不足”,从睡眠时间不足6小时的女生中随机抽取2人,求此2人中恰有一人为“严重睡眠不足”的概率;
(2)完成下面2×2列联表,并回答是否有90%的把握认为“睡眠时间与性别有关”?
睡眠时间少于7小时 | 睡眠时间不少于7小时 | 合计 | |
男生 | |||
女生 | |||
合计 |
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
( ,其中n=a+b+c+d)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知在△ABC中,角A,B,C的对边分别是a,b,c,向量m=(2b,1),n=(2a-c,cos C),且m∥n.(1)若b2=ac,试判断△ABC的形状;(2)求y=1-的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列的前n项和为, , ,数列满足: , , ,数列的前n项和为
(1)求数列的通项公式及前n项和;
(2)求数列的通项公式及前n项和;
(3)记集合,若M的子集个数为16,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= 为偶函数
(1)求实数a的值;
(2)记集合E={y|y=f(x),x∈{﹣1,1,2}},λ=lg22+lg2lg5+lg5﹣ ,判断λ与E的关系;
(3)当x∈[ , ](m>0,n>0)时,若函数f(x)的值域[2﹣3m,2﹣3n],求实数m,n值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com