精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,O为坐标原点,A,B,C三点满足 = + . (Ⅰ)求证:A,B,C三点共线;
(Ⅱ)已知A(1,cosx),B(1+sinx,cosx),x∈[0, ],f(x)= ﹣(2m2+ )| |的最小值为 ,求实数m的值.

【答案】解:(Ⅰ)证明:根据条件:

=

=

=

∴A,B,C三点共线;

(Ⅱ)根据条件: = ,且

=

=﹣sin2x﹣2m2sinx+2

=﹣(sinx+m22+m4+2;

又sinx∈[0,1];

∴sinx=1时,f(x)取最小值


【解析】(Ⅰ)将 代入 ,然后进行向量的数乘运算即可得出 ,从而得出A,B,C三点共线;(Ⅱ)由条件即可求出 的坐标,进而求出 ,及 的值,代入 并化简即可得出f(x)=﹣sin2x2m2sinx+2,而配方即可得出sinx=1时,f(x)取最小值 ,从而得到 ,这样即可解出m的值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在棱长都相等的四面体PABC中,DEF分别是ABBCCA的中点,则下面四个结论中不成立的是 ( )
A.BC∥平面PDF
B.DF⊥平面PAE
C.平面PDF⊥平面ABC
D.平面PAE⊥平面ABC

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知一个圆经过直线l:2x+y+4=0与圆C:x2+y2+2x﹣4y=0的两个交点,并且有最小面积,则此圆的方程为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂修建一个长方体形无盖蓄水池,其容积为4800立方米,深度为3米.池底每平方米的造价为150元,池壁每平方米的造价为120元.设池底长方形长为x米.
(Ⅰ)求底面积并用含x的表达式表示池壁面积;
(Ⅱ)怎样设计水池能使总造价最低?最低造价是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=Asin(ωx+φ)(ω>0,0<φ< )的部分图象如图所示.
(1)求f(x)的解析式;
(2)将函数y=f(x)的图象上所有点的纵坐标不变,横坐标缩短为原来的 倍,再将所得函数图象向右平移 个单位,得到函数y=g(x)的图象,求g(x)的单调递增区间;
(3)当x∈[﹣ ]时,求函数y=f(x+ )﹣ f(x+ )的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线E:x2=2py(p>0),直线y=kx+2与E交于A、B两点,且 =2,其中O为原点.
(1)求抛物线E的方程;
(2)点C坐标为(0,﹣2),记直线CA、CB的斜率分别为k1 , k2 , 证明:k12+k22﹣2k2为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A=[a﹣3,a],函数 (﹣2≤x≤5)的单调减区间为集合B.
(1)若a=0,求(RA)∪(RB);
(2)若A∩B=A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位要在800名员工中抽去80名员工调查职工身体健康状况,其中青年员工400名,中年员工300名,老年员工100名,下列说法错误的是(
A.老年人应作为重点调查对象,故抽取的老年人应超过40名
B.每个人被抽到的概率相同为
C.应使用分层抽样抽取样本调查
D.抽出的样本能在一定程度上反映总体的健康状况

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,平面内有三个向量 ,其中 的夹角为30°, 的夹角为90°,且| |=2,| |=2,| |=2 ,若 ,(λ,μ∈R)则(
A.λ=4,μ=2
B.λ=4,μ=1
C.λ=2,μ=1
D.λ=2,μ=2

查看答案和解析>>

同步练习册答案