精英家教网 > 高中数学 > 题目详情
1.若函数f(x)=|asinx+bcosx-1|+|bsinx-acosx|(a,b∈R)的最大值为11,则a2+b2=50.

分析 化简asinx+bcosx为$\sqrt{{a}^{2}{+b}^{2}}$sin(x+α),化简bsinx-acosx 为-$\sqrt{{a}^{2}{+b}^{2}}$cos(x+α),可得f(x)的解析式,当f(x)达到最大值时,f(x)=-$\sqrt{{a}^{2}{+b}^{2}}$sin(x+α)+1+$\sqrt{{a}^{2}{+b}^{2}}$cos(x+α)=1+$\sqrt{2}$•$\sqrt{{a}^{2}{+b}^{2}}$cos(x+α+$\frac{π}{4}$),结合题意可得 1+$\sqrt{2}$•$\sqrt{{a}^{2}{+b}^{2}}$=11,由此求得a2+b2的值.

解答 解:∵asinx+bcosx=$\sqrt{{a}^{2}{+b}^{2}}$($\frac{a}{\sqrt{{a}^{2}{+b}^{2}}}$sinx+$\frac{b}{\sqrt{{a}^{2}{+b}^{2}}}$cosx)
=$\sqrt{{a}^{2}{+b}^{2}}$sin(x+α),其中,tanα=$\frac{b}{a}$,
又 bsinx-acosx=$\sqrt{{a}^{2}{+b}^{2}}$[$\frac{a}{\sqrt{{a}^{2}{+b}^{2}}}$(-cosx )+$\frac{b}{\sqrt{{a}^{2}{+b}^{2}}}$sinx]
=-$\sqrt{{a}^{2}{+b}^{2}}$[$\frac{a}{\sqrt{{a}^{2}{+b}^{2}}}$cosx-$\frac{b}{\sqrt{{a}^{2}{+b}^{2}}}$sinx]=-$\sqrt{{a}^{2}{+b}^{2}}$cos(x+α).
∴函数f(x)=|asinx+bcosx-1|+|bsinx-acosx|=|$\sqrt{{a}^{2}{+b}^{2}}$sin(x+α)-1|+|$\sqrt{{a}^{2}{+b}^{2}}$cos(x+α)|
f(x)达到最大值时,f(x)=-$\sqrt{{a}^{2}{+b}^{2}}$sin(x+α)+1+$\sqrt{{a}^{2}{+b}^{2}}$cos(x+α)
=1+$\sqrt{2}$•$\sqrt{{a}^{2}{+b}^{2}}$cos(x+α+$\frac{π}{4}$).
由于函数f(x)的最大值为11,∴1+$\sqrt{2}$•$\sqrt{{a}^{2}{+b}^{2}}$=11,∴a2+b2=50,
故答案为:50.

点评 本题主要考查辅助角公式,三角恒等变换,余弦函数的值域,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知圆C:x2+y2=4,直线l:ax+y+2a=0,当直线l与圆C相交于A,B两点,且|AB|=2$\sqrt{2}$时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知f(x)=(logmx)2+2logmx-3(m>0,且m≠1).
(Ⅰ)当m=2时,解不等式f(x)<0;
(Ⅱ)f(x)<0在[2,4]恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数f(x)满足:对?x∈R+都有f′(x)=$\frac{3}{x}$f(x),且f(22016)≠0,则$\frac{f({2}^{2017})}{f({2}^{2016})}$的值为(  )
A.0.125B.0.8C.1D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若正实数a,b满足(2a+b)2=1+6ab,则$\frac{ab}{2a+b+1}$的最大值为$\frac{1}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.$\frac{si{n}^{2}50°}{1+sin10°}$=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=$\left\{{\begin{array}{l}{{2^x},x≤0}\\{sinx,x>0}\end{array}}$,则$f(f(\frac{7π}{6}))$=(  )
A.$\sqrt{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.长方体ABCD-A1B1C1D1的8个顶点都在球O的表面上,E为AB的中点,CE=3,cos∠ACE=$\frac{5\sqrt{3}}{9}$,且四边形ABB1A1为正方形,则球O的直经为(  )
A.4B.6C.4或$\sqrt{51}$D.6或$\sqrt{53}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数$f(x)=\left\{\begin{array}{l}{log_5}({1-x}),(x<1)\\-{(x-2)^2}+2,(x≥1)\end{array}\right.$,则关于x的方程$f(x+\frac{1}{x}-2)=a$,当1<a<2的实根个数为6.

查看答案和解析>>

同步练习册答案