精英家教网 > 高中数学 > 题目详情

【题目】在△ABC中,角A,B,C的对边分别为a,b,c,且满足bcosA=(2c+a)cos(π﹣B)
(1)求角B的大小;
(2)若b=4,△ABC的面积为 , 求a+c的值.

【答案】解:(1)因为bcosA=(2c+a)cos(π﹣B),
所以sinBcosA=(﹣2sinC﹣sinA)cosB
所以sin(A+B)=﹣2sinCcosB
∴cosB=﹣
∴B=
(2)由=acsinB=得ac=4
由余弦定理得b2=a2+c2+ac=(a+c)2﹣ac=16
∴a+c=2
【解析】(1)利用正弦定理化简bcosA=(2c+a)cos(π﹣B),通过两角和与差的三角函数求出cosB,即可得到结果.
(2)利用三角形的面积求出ac=4,通过由余弦定理求解即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某高校文学院和理学院的学生组队参加大学生电视辩论赛,文学院推荐了2名男生,3名女生,理学院推荐了4名男生,3名女生,文学院和理学院所推荐的学生一起参加集训,由于集训后学生水平相当,从参加集训的男生中随机抽取3人,女生中随机抽取3人组成代表队.
(1)求文学院至少有一名学生入选代表队的概率;
(2)某场比赛前,从代表队的6名学生在随机抽取4名参赛,记X表示参赛的男生人数,求X的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知直三棱柱中,的中点,,求证: (1)

(2)∥平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=alnx(a>0),e为自然对数的底数.
(Ⅰ)若过点A(2,f(2))的切线斜率为2,求实数a的值;
(Ⅱ)当x>0时,求证:f(x)≥a(1﹣);
(Ⅲ)在区间(1,e)上>1恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为的四个顶点为顶点的四边形的面积为

(1)求椭圆的方程

(2)设分别为椭圆的左右顶点是直线上不同于点的任意一点若直线分别与椭圆相交于异于的点试探究是否在以为直径的圆内证明你的结论

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设是两个非零向量,则下列哪个描述是正确的(  )
A.若|+|=||﹣||,则
B.若 , 则|+|=||﹣||
C.若|+|=||﹣||,则存在实数λ使得=
D.若存在实数λ使得= , 则|+|=||﹣||

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点,直线,设圆的半径为1, 圆心在.

1)若圆心也在直线上,过点作圆的切线,求切线方程;

2)若圆上存在点,使,求圆心的横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)在R上存在导数f′(x),x∈R,有f(﹣x)+f(x)=x2 , 在(0,+∞)上f′(x)<x,若f(4﹣m)﹣f(m)≥8﹣4m.则实数m的取值范围为(
A.[﹣2,2]
B.[2,+∞)
C.[0,+∞)
D.(﹣∞,﹣2]∪[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= x3﹣ax2+3x+b(a,b∈R).
(Ⅰ)当a=2,b=0时,求f(x)在[0,3]上的值域.
(Ⅱ)对任意的b,函数g(x)=|f(x)|﹣ 的零点不超过4个,求a的取值范围.

查看答案和解析>>

同步练习册答案