精英家教网 > 高中数学 > 题目详情

已知椭圆C:的两个焦点为F1、F2,点P在椭圆C上,且|PF1|=,

|PF2|= , PF1⊥F1F2.        

(1)求椭圆C的方程;(6分)

(2)若直线L过圆x2+y2+4x-2y=0的圆心M交椭圆于A、B两点,且A、B关于点M对称,求直线L的方程.

 

【答案】

(1)椭圆C的方程为=1. (2)所求的直线方程为8x-9y+25=0.

【解析】

试题分析:(1) ∵点P在椭圆C上,∴,a=3.

在Rt△PF1F2中,故椭圆的半焦距c=,

从而b2=a2-c2="4," ∴椭圆C的方程为=1.

(2)设A,B的坐标分别为(x1, y1)、(x2, y2). ∵圆的方程为(x+2)2+(y-1)2=5,  ∴圆心M的坐标为(-2,1). 从而可设直线l的方程为 y="k(x+2)+1," 代入椭圆C的方程得

(4+9k2)x2+(36k2+18k)x+36k2+36k-27=0.  (*)

又∵A、B关于点M对称.  ∴  解得

∴直线l的方程为  即8x-9y+25=0. 此时方程(*)的 ,故所求的直线方程为8x-9y+25=0.

解法二:(1)同解法一.

(2)已知圆的方程为(x+2)2+(y-1)2=5,  ∴圆心M的坐标为(-2,1).

设A,B的坐标分别为(x1,y1),(x2,y2). 由题意x1x2

 ①     ②

由①-②得   ③

又∵A、B关于点M对称,∴x1+ x2=-4, y1+ y2=2, 代入③得,即直线l的斜率为

∴直线l的方程为y-1=(x+2),即8x-9y+25="0." 此时方程(*)的 ,故所求的直线方程为8x-9y+25=0.

考点:本题主要考查椭圆的标准方程,直线与圆、椭圆的位置关系。

点评:中档题,本题求椭圆的标准方程时,应用了椭圆的定义。曲线关系问题,往往通过联立方程组,得到一元二次方程,运用韦达定理。本解法给出了两种思路,其中思路1主要是利用韦达定理,结合对称性求得直线方程;思路2则利用了“点差法”求斜率,进一步结合对称性求得直线方程。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在直角坐标系xOy中,已知椭圆C:
y2
a2
+
y2
b2
=1(a>b>0)的离心率e=
3
2
,左右两个焦分别为F1、F2.过右焦点F2且与轴垂直的
直线与椭圆C相交M、N两点,且|MN|=1.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设椭圆C的左顶点为A,下顶点为B,动点P满足
PA
AB
=m-4,(m∈R)试求点P的轨迹方程,使点B关于该轨迹的对称点落在椭圆C上.

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系xOy中,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率e=
2
2
,左右两个焦分别为F1,F2.过右焦点F2且与x轴垂直的直线与椭圆C相交M、N两点,且|MN|=2.
(1)求椭圆C的方程;
(2)设椭圆C的一个顶点为B(0,-b),是否存在直线l:y=x+m,使点B关于直线l 的对称点落在椭圆C上,若存在,求出直线l的方程,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在直角坐标系xOy中,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率e=
2
2
,左右两个焦分别为F1,F2.过右焦点F2且与x轴垂直的直线与椭圆C相交M、N两点,且|MN|=2.
(1)求椭圆C的方程;
(2)设椭圆C的一个顶点为B(0,-b),是否存在直线l:y=x+m,使点B关于直线l 的对称点落在椭圆C上,若存在,求出直线l的方程,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广东省湛江二中高三(上)第一次月考数学试卷(理科)(解析版) 题型:解答题

如图,在直角坐标系xOy中,已知椭圆C:+=1(a>b>0)的离心率e=,左右两个焦分别为F1、F2.过右焦点F2且与轴垂直的
直线与椭圆C相交M、N两点,且|MN|=1.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设椭圆C的左顶点为A,下顶点为B,动点P满足=m-4,(m∈R)试求点P的轨迹方程,使点B关于该轨迹的对称点落在椭圆C上.

查看答案和解析>>

科目:高中数学 来源:2010年内蒙古赤峰市高三统考数学试卷(文科)(解析版) 题型:解答题

如图,在直角坐标系xOy中,已知椭圆C:+=1(a>b>0)的离心率e=,左右两个焦分别为F1、F2.过右焦点F2且与轴垂直的
直线与椭圆C相交M、N两点,且|MN|=1.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设椭圆C的左顶点为A,下顶点为B,动点P满足=m-4,(m∈R)试求点P的轨迹方程,使点B关于该轨迹的对称点落在椭圆C上.

查看答案和解析>>

同步练习册答案