【题目】[2019·龙泉驿区一中]交强险是车主必须为机动车购买的险种,若普通6座以下私家车投保交强险第一年的费用(基准保费)统一为元,在下一年续保时,实行的是费率浮动机制,且保费与上一年车辆发生道路交通事故的情况相联系,发生交通事故的次数越多,费率也就越高,具体浮动情况如下表:
交强险浮动因素和费率浮动比率表 | ||
浮动因素 | 浮动比率 | |
上一个年度未发生有责任道路交通事故 | 下浮 | |
上两个年度未发生有责任道路交通事故 | 下浮 | |
上三个以及以上年度未发生有责任道路交通事故 | 下浮 | |
上一个年度发生一次有责任不涉及死亡的道路交通事故 | ||
上一个年度发生两次及两次以上有责任道路交通事故 | 上浮 | |
上一个年度发生有责任道路交通死亡事故 | 上浮 |
某机构为了研究某一品牌普通6座以下私家车的投保情况,随机抽取了70辆车龄已满三年该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:
类型 | ||||||
数量 | 10 | 13 | 7 | 20 | 14 | 6 |
(1)求一辆普通6座以下私家车在第四年续保时保费高于基本保费的频率;
(2)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车.假设购进一辆事故车亏损6000元,一辆非事故车盈利10000元,且各种投保类型车的频率与上述机构调查的频率一致,完成下列问题:
①若该销售商店内有7辆(车龄已满三年)该品牌二手车,某顾客欲在店内随机挑选2辆,求这2辆车恰好有一辆为事故车的概率;
②若该销售商一次性购进70辆(车龄已满三年)该品牌二手车,求一辆车盈利的平均值(结果用分数表示).
【答案】(1);(2)①;②元
【解析】
(1)利用等可能事件概率计算公式,能求出一辆普通6座以下私家车第四年续保时保费高于基本保费的概率;(2)①由统计数据可知,该销售商店内的7辆该品牌车龄已满三年的二手车中有2辆事故车,设为,,5辆非事故车,设为,,,.利用列举法求出从7辆车中随机挑选两辆车的基本事件总和其中两辆车恰好有一辆事故车包含的基本事件个数,由此能求出该顾客在店内随机挑选的两辆车恰好有一辆事故车的概率,②由统计数据可知,该销售商一次购进70辆该品牌车龄已满三年的二手车有事故车20辆,非事故车50辆,由此能求出一辆车盈利的平均值.
(1)一辆普通6座以下私家车第四年续保时保费高于基本保费的频率为
(2)①由统计数据可知,该销售商店内的7辆该品牌车龄已满三年的二手车中有2辆事故车,设为,,5辆非事故车,设为,,,.从7辆车中随机挑选2辆车的情况有,,,,,,,,,,,,,,,,,,,,共21种.其中2辆车恰好有一辆为事故车的情况有,,,,,,,,共10种,所以该顾客在店内随机挑选2辆车,这2辆车恰好有一辆事故车的概率为.
②由统计数据可知,该销售商一次购进70辆该品牌车龄已满三年的二手车有事故车20辆,非事故车50辆,所以一辆车盈利的平均值为 (元).
科目:高中数学 来源: 题型:
【题目】设0<b<1+a,若关于x的不等式(x﹣b)2>(ax)2的解集中的整数解恰有3个,则( )
A.﹣1<a<0
B.0<a<1
C.1<a<3
D.3<a<6
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】A市某机构为了调查该市市民对我国申办2034年足球世界杯的态度,随机选取了140位市民进行调查,调查结果统计如下:
支持 | 不支持 | 总计 | |
男性市民 | 60 | ||
女性市民 | 50 | ||
合计 | 70 | 140 |
(I)根据已知数据,把表格数据填写完整;
(II)利用(1)完成的表格数据回答下列问题:
(ⅰ)能否在犯错误的概率不超过0.001的前提下认为性别与支持申办足球世界杯有关;
(ⅱ)已知在被调查的支持申办足球世界杯的男性市民中有5位退休老人,其中2位是教师,现从这5位退休老人中随机抽取3人,求至多有1位老师的概率。
附:,其中
0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆:,圆:,动圆与圆外切并且与圆内切,圆心轨迹为曲线.
(1)求曲线的方程;
(2)若是曲线上关于轴对称的两点,点,直线交曲线
于另一点,求证:直线过定点,并求该定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=x3+ax2+bx+1的导数满足,,其中常数a,b∈R.
(1)求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)设,求函数g(x)的极值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】矩形ABCD的面积为4,如果矩形的周长不大于10,则称此矩形是“美观矩形”.
(1)当矩形ABCD是“美观矩形”时,求矩形周长的取值范围;
(2)就矩形ABCD的一边长x的不同值,讨论矩形是否是“美观矩形”?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=sin(x+ )+sin(x﹣ )+cosx+a(a∈R,a为常数). (Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)若函数f(x)在[﹣ , ]上的最大值与最小值之和为 ,求实数a的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com