【题目】已知椭圆C: + =1(a>b>0)的左、右焦点分别为F1、F2 , 点M(0,2)关于直线y=﹣x的对称点在椭圆C上,且△MF1F2为正三角形.
(1)求椭圆C的方程;
(2)垂直于x轴的直线与椭圆C交于A,B两点,过点P(4,0)的直线PB交椭圆C于另一点E,证明:直线AE与x轴相交于定点.
【答案】
(1)解:如图,点M(0,2)关于直线y=﹣x的对称点为(﹣2,0),
∵(﹣2,0)在椭圆上,∴a=2,
又△MF1F2为正三角形,
∴tan30°= ,c=2tan30°= ,
∴b2=a2﹣c2=4﹣ = ,
∴椭圆C的方程 + =1;
(2)解:∵P(4,0),
∴直线PB的方程可设为x=ky+4,
由 ,
得(2k2+3)y2+16ky+24=0,
∵△>0,
∴k2> .
设B(x1,y1),E(x2,y2),则A(x1,﹣y1),
∴y1+y2=﹣ ,y1y2=
直线AE:y+y1= (x﹣x1),
∵x1y2+x2y1=2ky1y2+4(y1+y2)= ﹣ =﹣ =y1+y2,
∴直线AE:y+y1= (x﹣x1),即为y= (x﹣1)恒过定点(1,0).
∴AE恒过定点(1,0).
【解析】(1)由题意画出图形,求出M点关于直线y=﹣x的对称点,则a可求,再由△MF1F2为正三角形列式求得c,结合隐含条件求得b,则椭圆方程可求,(2)设直线PB的方程可设为x=ky+4,联立方程组,设B(x1 , y1),E(x2 , y2),则A(x1 , ﹣y1),根据韦达定理可得y1+y2=﹣ ,y1y2= ,由此能够证明直线AE恒过定点(1,0).
【考点精析】本题主要考查了椭圆的标准方程的相关知识点,需要掌握椭圆标准方程焦点在x轴:,焦点在y轴:才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】已知点F1 , F2分别是双曲线 的左、右焦点,过F1且垂直于x轴的直线与双曲线交于A,B两点,若△ABF2是锐角三角形,则该双曲线离心率的取值范围是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数y=f(x)是R上的偶函数,且当x≤0时,f(x)=log (1﹣x)+x.
(1)求f(1)的值;
(2)求函数y=f(x)的表达式,并直接写出其单调区间(不需要证明);
(3)若f(lga)+2<0,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知y=f(x)是定义在R上的奇函数,当x≥0时,f(x)=x+x2 .
(1)求x<0时,f(x)的解析式;
(2)问是否存在这样的非负数a,b,当x∈[a,b]时,f(x)的值域为[4a﹣2,6b﹣6]?若存在,求出所有的a,b值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知a、b、c分别是△ABC的三个内角A、B、C的对边.
(1)若△ABC面积S△ABC= ,c=2,A=60°,求a、b的值;
(2)若a=ccosB,且b=csinA,试判断△ABC的形状.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在棱长为a的正方体ABCD﹣A1B1C1D1中,P为A1D1的中点,Q为A1B1上任意一点,E、F为CD上两点,且EF的长为定值,则下面四个值中不是定值的是( )
A.点P到平面QEF的距离
B.直线PQ与平面PEF所成的角
C.三棱锥P﹣QEF的体积
D.△QEF的面积
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com