精英家教网 > 高中数学 > 题目详情

【题目】已知点Pn(an,bn)满足an+1=an·bn+l ,bn+l =(nN*)且点P1的坐标为(1,-1).

(1)求过点P1,P2的直线l的方程;

(2)试用数学归纳法证明:对于n∈N*,点Pn都在(1)中的直线l上.

【答案】(1)2x+y-1=0(2)见解析

【解析】试题分析:(1)P1的坐标为(1,-1)a11b1=-1.

∴b2. a2a1·b2.

P2的坐标为()

直线l的方程为2xy1. …………….3

(2)①n1时,2a1b12×1(1)1成立.…………….4

假设nk(k∈N*k≥1)时,2akbk1成立,…………….6

2ak1bk12ak·bk1bk1(2ak1)…………….8

1

nk1时,命题也成立. ……………. 10

①②知,对n∈N*,都有2anbn1

即点Pn在直线l上. …………….12

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某小学庆“六一”晚会共由6个节目组成,演出顺序有如下要求:节目必须排在前两位,节目不能排在第一位,节目必须排在最后一位,该台晚会节目演出顺序的编排方案共有( )

A. 36种 B. 42种 C. 48种 D. 54种

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校为了解高三年级学生寒假期间的学习情况,抽取甲、乙两班,调查这两个班的学生在寒假期间每天平均学习的时间(单位:小时),统计结果绘成频率分别直方图(如图).已知甲、乙两班学生人数相同,甲班学生每天平均学习时间在区间的有8人.

I)求直方图中的值及甲班学生每天平均学习时间在区间的人数;

II)从甲、乙两个班每天平均学习时间大于10个小时的学生中任取4人参加测试,设4人中甲班学生的人数为,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x),g(x)的定义域都是D,直线x=x0(x0∈D),与y=f(x),y=g(x)的图象分别交于A,B两点,若|AB|的值是不等于0的常数,则称曲线y=f(x),y=g(x)为“平行曲线”,设f(x)=ex-alnx+c(a>0,c≠0),且y=f(x),y=g(x)为区间(0,+)的“平行曲线”,g(1)=e,g(x)在区间(2,3)上的零点唯一,则a的取值范围是_________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数.

(1)当时,解不等式

(2)若命题“”为真命题,求实数的取值范围;

(3)若关于的方程的解集中恰好有一个元素,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=-a2 lnx+x2-ax(a∈R).

(1)试讨论函数f(x)的单调性:

(2)若函数f(x)在区间(1,e)中有两个零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知 ,平面平面 中点.

(Ⅰ)证明: 平面

(Ⅱ)求直线与平面所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设k>0,函数f(x)=+x+kln|x﹣1|.
(1)讨论函数f(x)的单调性;
(2)当函数f(x)有两个极值点,且0<θ<π时,证明:(2k﹣1)sinθ+(1﹣k)sin[(1﹣k)θ]>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正三棱锥P﹣ABC,点P、A、B、C都在半径为的球面上,若PA、PB、PC两两互相垂直,则球心到截面ABC的距离为(  )
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案