精英家教网 > 高中数学 > 题目详情
一个等比数列{an}共有2n+1项,奇数项之积为100,偶数项之积为120,则an+1为(  )
A、
6
5
B、
5
6
C、20
D、110
考点:等比数列的性质
专题:计算题,等差数列与等比数列
分析:根据等比数列的通项公式和性质,利用整体法即可得到结论.
解答: 解:∵等比数列{an}共有2n+1项,且奇数项之积为100,偶数项之积为120,
∴T=a1a3???a2n+1=100,T=a2a4???a2n=120
T
T
=
a1a3a2n+1
a2a4a2n
=a1
a3
a2
a2n+1
a2n
=a1qn=an+1
即an+1=
100
120
=
5
6

故选B.
点评:本题主要考查等比数列的性质和通项公式的应用,要求熟练掌握等比数列的性质的应用,考查学生计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若x>0,则
12
x
+x的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:a是实数,命题P:?x∈R,使x2+2ax-4a<0;命题Q:-4<a<0;则命题P为假命题是命题Q成立的(  )
A、充要条件
B、必要不充分条件
C、充分不必要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

为了解学生喜欢数学是否与性别有关,对50个学生进行了问卷调查得到了如下的列联表:
喜欢数学不喜欢数学合计
男生5
女生10
合计50
已知在全部50人中随机抽取1人抽到喜欢数学的学生的概率为
3
5

(1)请将上面的列联表补充完整(不用写计算过程);
(2)是否有99.5%的把握认为喜欢数学与性别有关?说明你的理由;
(3)现从女生中抽取2人进一步调查,设其中喜欢数学的女生人数为X,求X的分布列与期望.
下面的临界值表供参考:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(参考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:

设a,b是实数,则“|b|>|a|>0”是“
b
a
>1”的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

造船厂年造船量最多20艘,造船x艘产值函数为R(x)=3700x+45x2-10x3(单位:万元),成本函数c(x)=460x+5000(单位:万元),又在经济学中,函数f(x)的边际函数Mf(x)定义为Mf(x)=f(x+1)-f(x)
(1)求利润函数P(x)及边际利润函数MP(x)(利润=产值-成本);
(2)问年造船量安排多少艘时,公司造船利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

(文科)已知z=a+bi(a、b∈R,i是虚数单位),z1,z2∈C,定义:D(z)=||z||=|a|+|b|,D(z1,z2)=||z1-z2||.给出下列命题:
(1)对任意z∈C,都有D(z)>0;
(2)若
.
z
是复数z的共轭复数,则D(
.
z
)=D(z)
恒成立;
(3)若D(z1)=D(z2)(z1、z2∈C),则z1=z2
(4)对任意z1、z2∈C,结论D(z1,z2)=D(z2,z1)恒成立,
则其中真命题是(  )
A、(1)(2)(3)(4)
B、(2)(3)(4)
C、(2)(4)
D、(2)(3)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|1≤x≤3},B={x|3x>9}
(Ⅰ)分别求A∩B,(∁RB)∪A;
(Ⅱ)已知集合C={x|a-4<x<a+1},若A⊆C,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

不用求根公式,求函数f(x)=(x-2)(x-5)-1的零点的个数,并比较零点与3的大小.

查看答案和解析>>

同步练习册答案