精英家教网 > 高中数学 > 题目详情
8.设5${\;}^{lo{g}_{5}(2x-1)}$=25,则x的值等于(  )
A.10B.13C.100D.±100

分析 结合已知条件,利用对数的性质和运算法则求解.

解答 解:∵5${\;}^{lo{g}_{5}(2x-1)}$=25,
∴2x-1=25,
解得x=13.
故选:B.

点评 本题考查满足条件的实数值的求法,是基础题,解题时要认真审题,注意对数性质和运算法则的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=$\frac{{x}^{n}-{x}^{-n}}{{x}^{n}+{x}^{-n}}$,x为正实数.n为非零有理数.
(1)判断f(x)在(0,+∞)上是增函数还是减函数.并证明你的结论;
(2)当n∈N*时,比较f($\sqrt{2}$)与$\frac{{n}^{2}-1}{{n}^{2}+1}$的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.证明:如果f(x)为(-a,a)内可导的偶(奇)函数,则导数f′(x)必为(-a,a)内的奇(偶)函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.化简:$\frac{{3}^{x}-{2}^{-x}}{{3}^{x}+{2}^{-x}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=|2x-1|,a<b<c,且f(a)>f(c)>f(b),则下列结论中,一定成立的是③.(写出所有正确结论的序号)
①a<0,b<0,c<0;②a<0,b≥0,c>0;
③2a+2c<2;④2b+2c>2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.定义在R上的奇函数f(x)满足f(x+1)=f(-x),当x∈(0,1)时,f(x)=$\left\{\begin{array}{l}{lo{g}_{\frac{1}{2}}|\frac{1}{2}-x|,x≠\frac{1}{2}}\\{0,x=\frac{1}{2}}\end{array}\right.$,则f(x)在区间(1,$\frac{3}{2}$)内是(  )
A.增函数且f(x)>0B.增函数且f(x)<0C.减函数且f(x)>0D.减函数且f(x)<0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知log37•log711•log11m=4,则m=81.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.用两种金属材料做一个矩形框架,按要求长和宽应选用的金属材料的价格分别为3元/米和5元/米,现在花费50元,当长.宽各为多少时,所围成的矩形面积最大?并求其最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.若a>0,b>0,且$\frac{1}{a}$+$\frac{1}{b}$=2.
(1)求a3+b3的最小值;
(2)是否存在a,b使a+4b=3?

查看答案和解析>>

同步练习册答案