精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
1
3
x3+ax2+bx,a,b∈R

(1)曲线C:y=f(x)经过点P(1,2),且曲线C在点P处的切线平行于直线y=2x+1,求a,b的值;
(2)在(1)的条件下试求函数g(x)=m[f(x)-
7
3
x](m∈R,m≠0)
的极小值;
(3)若f(x)在区间(1,2)内存在两个极值点,求证:0<a+b<2.
分析:(1)曲线在P(1,2)处的切线与y=2x+1平行等价于函数在该点的导数为2,f(1)=2,代入可求a,b
(2)由(1)知g(x)=
m
3
(x3-2x2)
,g′(x)=mx(x-
4
3
),分类讨论:分m>0时,m<0时两种情况讨论,g(x)的单调性,进而可求g(x)的极小值
(3)由题意可得f′(x)=0即x2+2ax+b=0在(1,2)内有两个不等的实根,根据二次方程的实根分布可求
解答:(1)解:对函数求导可得,f′(x)=x2+2ax+b,
由题设知:
 f(1)=
1
3
+a+b=2
 f′(1)=1+2a+b=2
解得
 a=-
2
3
 b=
7
3
.
(4分)
(2)解:由(1)知g(x)=
m
3
(x3-2x2)
,g′(x)=mx(x-
4
3
),
当m>0时,g(x)在(-∞,0),(
4
3
,+∞)上递增,在(0,
4
3
)上递减,
所以g(x)的极小值为g(
4
3
)=-
32
81
m;
当m<0时,g(x)在(-∞,0),(
4
3
,+∞)上递减,在(0,
4
3
)上递增,
所以g(x)的极小值为g(0)=0;(8分)
(3)证明:因为f(x)在区间(1,2)内存在两个极值点,所以f′(x)=0,即x2+2ax+b=0在(1,2)内有两个不等的实根.
f′(1)=1+2a+b>0,(1)
f′(2)=4+4a+b>0,  (2)
1<-a<2,(3)
△=4(a2-b)>0. (4)
(11分)
由 (1)+(3)得a+b>0,由(4)得a+b<a2+a,
∴-2<a<-1,又a2+a=(a+
1
2
)2-
1
4
<2

∴a+b<2.
故a+b的取值范围是(0,2)(14分)
点评:本题考查函数的极值与导数之间的关系,考查函数有极值的条件,考查学生的转化与化归思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)、已知函数f(x)=
1+
2
cos(2x-
π
4
)
sin(x+
π
2
)
.若角α在第一象限且cosα=
3
5
,求f(α)

(2)函数f(x)=2cos2x-2
3
sinxcosx
的图象按向量
m
=(
π
6
,-1)
平移后,得到一个函数g(x)的图象,求g(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(1-
a
x
)ex
,若同时满足条件:
①?x0∈(0,+∞),x0为f(x)的一个极大值点;
②?x∈(8,+∞),f(x)>0.
则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+lnx
x

(1)如果a>0,函数在区间(a,a+
1
2
)
上存在极值,求实数a的取值范围;
(2)当x≥1时,不等式f(x)≥
k
x+1
恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+
1
x
,(x>1)
x2+1,(-1≤x≤1)
2x+3,(x<-1)

(1)求f(
1
2
-1
)
与f(f(1))的值;
(2)若f(a)=
3
2
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在D上的函数f(x)如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.已知函数f(x)=
1-m•2x1+m•2x

(1)m=1时,求函数f(x)在(-∞,0)上的值域,并判断f(x)在(-∞,0)上是否为有界函数,请说明理由;
(2)若函数f(x)在[0,1]上是以3为上界的有界函数,求m的取值范围.

查看答案和解析>>

同步练习册答案