精英家教网 > 高中数学 > 题目详情
如图所示,在四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,将△ABD沿BD折起,使平面ABD⊥平面BCD,构成三棱锥A—BCD,则在三棱锥A—BCD中,下列命题正确的是(  )
A.平面ABD⊥平面ABC
B.平面ADC⊥平面BDC
C.平面ABC⊥平面BDC
D.平面ADC⊥平面ABC
D
由题意知,在四边形ABCD中,CD⊥BD.
在三棱锥A—BCD中,平面ABD⊥平面BCD,两平面的交线为BD,
所以CD⊥平面ABD,因此有AB⊥CD.
又因为AB⊥AD,AD∩DC=D,所以AB⊥平面ADC,于是得到平面ADC⊥平面ABC.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

在如图所示的几何体中,四边形ABCD是等腰梯形,AB∥CD,∠DAB= 60°,FC⊥平面ABCD,AE⊥BD,CB=" CD=" CF.
(1)求证:BD⊥平面AED;
(2)求二面角F—BD—C的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在等腰梯形ABCD中,,N是BC的中点.如图所示,将梯形ABCD绕AB逆时针旋转,得到梯形

(1)求证:平面
(2)求证:平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在梯形ABCD中,AB//CD,AD=DC=CB=a,,四边形ACFE是矩形,且平面平面ABCD,点M在线段EF上.
(1)求证:平面ACFE;
(2)当EM为何值时,AM//平面BDF?证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在如图的几何体中,四边形为正方形,四边形为等腰梯形,
(1)求证:平面
(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱柱中,平面.以为邻边作平行
四边形,连接
(1)求证:平面
(2)求证:平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在中,,斜边可以通过 以直线为轴旋转得到,且二面角是直二面角.动点在斜边上.

(1)求证:平面平面
(2)求与平面所成角的最大角的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图所示为棱长是1的正方体的表面展开图,在原正方体中,给出下列三个结论:

①点M到AB的距离为
②三棱锥C-DNE的体积是
③AB与EF所成的角是.
其中正确结论的序号是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

(2014·泰安模拟)设a是空间中的一条直线,α是空间中的一个平面,则下列说法正确的是(  )
A.过a一定存在平面β,使得β∥α
B.过a一定存在平面β,使得β⊥α
C.在平面α内一定不存在直线b,使得a⊥b
D.在平面α内一定不存在直线b,使得a∥b

查看答案和解析>>

同步练习册答案