【题目】已知定义在R上的奇函数f(x),当x>0时,f(x)=﹣x2+2x (Ⅰ)求函数f(x)在R上的解析式;
(Ⅱ)若函数f(x)在区间[﹣1,a﹣2]上单调递增,求实数a的取值范围.
【答案】解:(Ⅰ)设x<0,则﹣x>0,f(﹣x)=﹣(﹣x)2+2(﹣x)=﹣x2﹣2x. 又f(x)为奇函数,所以f(﹣x)=﹣f(x)且f(0)=0.
于是x<0时f(x)=x2+2x.
所以f(x)= .
(Ⅱ)作出函数f(x)= 的图象如图:
则由图象可知函数的单调递增区间为[﹣1,1]
要使f(x)在[﹣1,a﹣2]上单调递增,
结合f(x)的图象知 ,
所以1<a≤3,故实数a的取值范围是(1,3].
【解析】(Ⅰ)根据函数奇偶性的对称性,即可求函数f(x)在R上的解析式;(Ⅱ)根据函数奇偶性和单调性的关系,利用数形结合即可求出a的取值范围.
【考点精析】掌握奇偶性与单调性的综合是解答本题的根本,需要知道奇函数在关于原点对称的区间上有相同的单调性;偶函数在关于原点对称的区间上有相反的单调性.
科目:高中数学 来源: 题型:
【题目】已知椭圆C的中心在原点,左焦点为F1(﹣1,0),右准线方程为:x=4.
(1)求椭圆C的标准方程;
(2)若椭圆C上点N到定点M(m,0)(0<m<2)的距离的最小值为1,求m的值及点N的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】动点P满足 + =2
(1)求动点P的轨迹F1 , F2的方程;
(2)设直线l与曲线C交于A,B两点,坐标原点O到直线l的距离为 ,求△OAB面 积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量 =(cosα,sinα), =(cosβ,sinβ), =(﹣1,0).
(1)求向量 的长度的最大值;
(2)设α= ,且 ⊥( ),求cosβ的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着资本市场的强势进入,互联网共享单车“忽如一夜春风来”,遍布了一二线城市的大街小巷.为了解共享单车在市的使用情况,某调查机构借助网络进行了问卷调查,并从参与调查的网友中抽取了200人进行抽样分析,得到表格:(单位:人)
经常使用 | 偶尔或不用 | 合计 | |
30岁及以下 | 70 | 30 | 100 |
30岁以上 | 60 | 40 | 100 |
合计 | 130 | 70 | 200 |
(1)根据以上数据,能否在犯错误的概率不超过0.15的前提下认为市使用共享单车情况与年龄有关?
(2)现从所抽取的30岁以上的网友中利用分层抽样的方法再抽取5人.
(i)分别求这5人中经常使用、偶尔或不用共享单车的人数;
(ii)从这5人中,再随机选出2人赠送一件礼品,求选出的2人中至少有1人经常使用共享单车的概率.
参考公式: ,其中.
参考数据:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com