精英家教网 > 高中数学 > 题目详情

【题目】已知定义在R上的奇函数f(x),当x>0时,f(x)=﹣x2+2x (Ⅰ)求函数f(x)在R上的解析式;
(Ⅱ)若函数f(x)在区间[﹣1,a﹣2]上单调递增,求实数a的取值范围.

【答案】解:(Ⅰ)设x<0,则﹣x>0,f(﹣x)=﹣(﹣x)2+2(﹣x)=﹣x2﹣2x. 又f(x)为奇函数,所以f(﹣x)=﹣f(x)且f(0)=0.
于是x<0时f(x)=x2+2x.
所以f(x)=
(Ⅱ)作出函数f(x)= 的图象如图:
则由图象可知函数的单调递增区间为[﹣1,1]
要使f(x)在[﹣1,a﹣2]上单调递增,
结合f(x)的图象知
所以1<a≤3,故实数a的取值范围是(1,3].

【解析】(Ⅰ)根据函数奇偶性的对称性,即可求函数f(x)在R上的解析式;(Ⅱ)根据函数奇偶性和单调性的关系,利用数形结合即可求出a的取值范围.
【考点精析】掌握奇偶性与单调性的综合是解答本题的根本,需要知道奇函数在关于原点对称的区间上有相同的单调性;偶函数在关于原点对称的区间上有相反的单调性.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆C的中心在原点,左焦点为F1(﹣1,0),右准线方程为:x=4.
(1)求椭圆C的标准方程;
(2)若椭圆C上点N到定点M(m,0)(0<m<2)的距离的最小值为1,求m的值及点N的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正方形的中心为直线x﹣y+1=0和2x+y+2=0的交点,一条边所在的直线方程是x+3y﹣5=0,求其他三边所在直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】动点P满足 + =2
(1)求动点P的轨迹F1 , F2的方程;
(2)设直线l与曲线C交于A,B两点,坐标原点O到直线l的距离为 ,求△OAB面 积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知各项均为整数的数列满足,前6项依次成等差数列, 从第5项起依次成等比数列.

1求数列的通项公式;

2求出所有的正整数m ,使得

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(cosα,sinα), =(cosβ,sinβ), =(﹣1,0).
(1)求向量 的长度的最大值;
(2)设α= ,且 ⊥( ),求cosβ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某离散型随机变量X服从的分布列如图,则随机变量X的方差D(X)等于

X

0

1

p

m

2m

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着资本市场的强势进入,互联网共享单车“忽如一夜春风来”,遍布了一二线城市的大街小巷.为了解共享单车在市的使用情况,某调查机构借助网络进行了问卷调查,并从参与调查的网友中抽取了200人进行抽样分析,得到表格:(单位:人)

经常使用

偶尔或不用

合计

30岁及以下

70

30

100

30岁以上

60

40

100

合计

130

70

200

(1)根据以上数据,能否在犯错误的概率不超过0.15的前提下认为市使用共享单车情况与年龄有关?

(2)现从所抽取的30岁以上的网友中利用分层抽样的方法再抽取5人.

(i)分别求这5人中经常使用、偶尔或不用共享单车的人数;

(ii)从这5人中,再随机选出2人赠送一件礼品,求选出的2人中至少有1人经常使用共享单车的概率.

参考公式: ,其中.

参考数据:

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四个函数中,在(0,1)上为增函数的是(
A.y=﹣log2x
B.y=sinx
C.
D.y=arccosx

查看答案和解析>>

同步练习册答案