精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ax2-2bx+a(a,b∈R)
(1)若a从集合{0,1,2,3}中任取一个元素,b从集合{0,1,2,3}中任取一个元素,求方程f(x)=0恰有两个不相等实根的概率;
(2)若b从区间[0,2]中任取一个数,a从区间[0,3]中任取一个数,求方程f(x)=0没有实根的概率.
分析:(1)先确定a、b取值的所有情况得到共有16种情况,又因为方程有两个不相等的根,所以根的判别式大于零得到a>b,而a>b占6种情况,所以方程f(x)=0有两个不相等实根的概率P=0.5;
(2)由a从区间[0,2]中任取一个数,b从区间[0,3]中任取一个数得试验的全部结果构成区域Ω={(a,b)|0≤a≤2,0≤b≤3},而方程f(x)=0没有实根构成的区域为M={(a,b)|0≤a≤2,0≤b≤3,a≤b},分别求出两个区域面积即可得到概率.
解答:解:(1)a取集合{0,1,2,3}中任一元素,
b取集合{0,1,2,3}中任一元素
∴a、b的取值情况的基本事件总数为16.
设“方程f(x)=0有两个不相等的实根”为事件A,
当a≥0,b≥0时方程f(x)=0有两个不相等实根的充要条件为b>a,且a≠0.
当b>a时,a的取值有(1,2)(1,3)(2,3)
即A包含的基本事件数为3.
∴方程f(x)=0有两个不相等的实根的概率P(A)=
3
16

(2)∵b从区间[0,2]中任取一个数,a从区间[0,3]中任取一个数
则试验的全部结果构成区域Ω={(a,b)|0≤b≤2,0≤a≤3}这是一个矩形区域,其面积SΩ=2×3=6
设“方程f(x)=0没有实根”为事件B,
则事件B构成的区域为M={(a,b)|0≤b≤2,0≤a≤3,a>b},
其面积SM=6-
1
2
×2×2=4,
由几何概型的概率计算公式可得方程f(x)=0没有实根的概率P(B)=
S
 
M
SΩ
=
4
6
=
2
3
点评:本题以一元二次方程的根为载体,考查古典概型和几何概型,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案