精英家教网 > 高中数学 > 题目详情

【题目】已知函数是定义在上的奇函数,且偶函数的定义域为,且当时, .若存在实数,使得成立,则实数的取值范围是( )

A. B. C. D.

【答案】D

【解析】

当0≤x≤1时,2x﹣1∈[0,1],

当x1时, 01]

即x0时,f(x)的值域为[0,1],

f(x)是定义在R上的奇函数,∴x≤0时f(x)的值域为[﹣1,0],

在R上的函数f(x)的值域为[﹣1,1].

定义在{x|x≠0}上的偶函数g(x),x0的g(x)=log2x,

∴g(x)=log2|x|(x≠0)

存在实数a,使得f(a)=g(b)成立,

令﹣1≤g(b)≤1.

即﹣1≤log2|b|≤1.

即有≤|b|≤2

≤b≤2或﹣2≤b≤

故选:D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣cosx,x∈[﹣ ],则满足f(x0)>f( )的x0的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:指数函数f(x)=(m+1)x是减函数;命题q:x∈R,x2+x+m<0,若“p或q”是真命题,则实数m的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线经过直线的交点.

(1)点到直线的距离为3,求直线的方程;

(2)求点到直线的距离的最大值,并求距离最大时的直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,已知 ,sinB=cosAsinC,SABC=6,P为线段AB上的点,且 ,则xy的最大值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某生态园将一三角形地块ABC的一角APQ开辟为水果园种植桃树,已知角A为120°,AB,AC的长度均大于200米,现在边界AP,AQ处建围墙,在PQ处围竹篱笆.
(1)若围墙AP,AQ总长度为200米,如何围可使得三角形地块APQ的面积最大?
(2)已知AP段围墙高1米,AQ段围墙高1.5米,AP段围墙造价为每平方米150元,AQ段围墙造价为每平方米100元.若围围墙用了30000元,问如何围可使竹篱笆用料最省?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=lnx﹣ax,a∈R.
(1)当x=1时,函数f(x)取得极值,求a的值;
(2)当0<a< 时,求函数f(x)在区间[1,2]上的最大值;
(3)当a=﹣1时,关于x的方程2mf(x)=x2(m>0)有唯一实数解,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(α)=
(1)化简f(α);
(2)若f(α)= <α<0,求sinαcosα,sinα﹣cosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱ABC﹣A1B1C1中,侧面AA1C1C底面ABC,AA1=A1C=AC=AB=BC=2,且点O为AC中点.
(Ⅰ)证明:A1O⊥平面ABC;
(Ⅱ)求二面角A1﹣AB﹣C的余弦值.

查看答案和解析>>

同步练习册答案