A. | $\frac{1}{2}$π | B. | $\frac{1}{3}$π | C. | π | D. | $\sqrt{3}$π |
分析 由 tanC=1,根据同角三角函数的基本关系可得cosC和sinC的值,由余弦定理可求c,由正弦定理可得外接圆的半径,利用圆的面积公式即可计算得解.
解答 解:∵tanC=1,a=1,b=$\sqrt{2}$,
∴cosC=$\sqrt{\frac{1}{1+ta{n}^{2}C}}$=$\frac{\sqrt{2}}{2}$,sinC=$\sqrt{1-co{s}^{2}C}$=$\frac{\sqrt{2}}{2}$,
∴由余弦定理可得:c=$\sqrt{{a}^{2}+{b}^{2}-2abcosC}$=1,
∴由正弦定理可得2R=$\frac{c}{sinC}$=$\frac{1}{\frac{\sqrt{2}}{2}}$=$\sqrt{2}$,
∴△ABC外接圆面积S=πR2=π×($\frac{\sqrt{2}}{2}$)2=$\frac{π}{2}$.
故选:A.
点评 本题考查正弦定理,余弦定理,同角三角函数基本关系式在解三角形中的应用,求出sinC是解题的关键,考查了转化思想,属于基础题.
科目:高中数学 来源: 题型:选择题
A. | f(1)=14 | B. | f(1)>14 | C. | f(1)≤14 | D. | f(1)≥14 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1 | B. | $\frac{7}{4}$ | C. | $\frac{11}{4}$ | D. | $\frac{7}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 8 | B. | $\frac{4}{3}$ | C. | $\frac{8}{3}$ | D. | $\frac{10}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com