精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中, 的中点.

1)求证: 平面

2)求三棱锥的体积.

【答案】(1)见解析;(2).

【解析】试题分析:1)取PB中点M,连结AM,MN,推导出四边形AMND是平行四边形,从而NDAM,由此能证明ND∥面PAB.
2)N到面ABCD的距离等于P到面ABCD的距离的一半,且PA⊥面ABCD,PA=4,从而三棱锥N-ACD的高是2,由此能求出三棱锥N-ACD的体积.

试题解析:

证明:(Ⅰ)如图,取PB中点M,连结AMMN.

MN是△BCP的中位线,∴MNBC,且MN=BC.

依题意得,ADBC,则有ADMN

∴四边形AMND是平行四边形,∴NDAM

NDPABAMPAB

ND∥面PAB

(Ⅱ)∵NPC的中点,

N到面ABCD的距离等于P到面ABCD的距离的一半,且PA⊥面ABCDPA=4,

∴三棱锥NACD的高是2.

在等腰△ABC中,AC=AB=3,BC=4,BC边上的高为.

BCAD,∴CAD的距离为

SADC=.

∴三棱锥NACD的体积是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,设点 (1,0),直线: ,点在直线上移动, 是线段轴的交点, 异于点RQ满足 .

1求动点的轨迹的方程;

2 的轨迹的方程为过点作两条互相垂直的曲线

的弦. ,设. 的中点分别为

问直线是否经过某个定点?如果是,求出该定点,

如果不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

极坐标系中, 为极点,半径为2的圆的圆心坐标为.

1)求圆的极坐标方程;

2)设直角坐标系的原点与极点重合, 轴非负关轴与极轴重合,直线的参数方程为为参数),由直线上的点向圆引切线,求切线长的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,(其中 为自然对数的底数, …….

1)令,若对任意的恒成立,求实数的值;

2)在(1)的条件下,设为整数,且对于任意正整数 ,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在极坐标系中,曲线的极坐标方程为,以极点为原点,极轴为轴的正半轴建立平面直角坐标系,直线的参数方程为为参数).

1)写出曲线的参数方程和直线的普通方程;

2)已知点是曲线上一点,求点到直线的最小距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=cosxcos(x﹣ ).
(1)求f( )的值.
(2)求使f(x)< 成立的x的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}满足a3=7,a5+a7=26.{an}的前n项和为Sn
(1)求an及Sn
(2)令bn=﹣ (n∈N*),求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是一个算法的流程图,则输出的a值为(
A.511
B.1023
C.2047
D.4095

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,定点为圆上一动点,线段的垂直平分线交线段于点,设点的轨迹为曲线

(Ⅰ)求曲线的方程;

(Ⅱ)若经过的直线交曲线于不同的两点,(点在点, 之间),且满足,求直线的方程.

查看答案和解析>>

同步练习册答案