精英家教网 > 高中数学 > 题目详情

【题目】目前,中国有三分之二的城市面临垃圾围城的窘境. 我国的垃圾处理多采用填埋的方式,占用上万亩土地,并且严重污染环境. 垃圾分类把不易降解的物质分出来,减轻了土地的严重侵蚀,减少了土地流失. 202051日起,北京市将实行生活垃圾分类,分类标准为厨余垃圾、可回收物、有害垃圾和其它垃圾四类 .生活垃圾中有30%~40%可以回收利用,分出可回收垃圾既环保,又节约资源. 如:回收利用1吨废纸可再造出0.8吨好纸,可以挽救17棵大树,少用纯碱240千克,降低造纸的污染排放75%,节省造纸能源消耗40%~50.

现调查了北京市5个小区12月份的生活垃圾投放情况,其中可回收物中废纸和塑料品的投放量如下表:

小区

小区

小区

小区

小区

废纸投放量(吨)

5

5.1

5.2

4.8

4.9

塑料品投放量(吨)

3.5

3.6

3.7

3.4

3.3

(Ⅰ)从5个小区中任取1个小区,求该小区12月份的可回收物中,废纸投放量超过5吨且塑料品投放量超过3.5吨的概率;

(Ⅱ)从5个小区中任取2个小区,记12月份投放的废纸可再造好纸超过4吨的小区个数,求的分布列及期望.

【答案】(Ⅰ);(Ⅱ)详见解析.

【解析】

(Ⅰ)基本事件的总数为5,随机事件中含有的基本事件的个数为2,从而可得随机事件的概率.

(Ⅱ)利用超几何分布可求X的分布列及期望.

解:(Ⅰ)记该小区12月份的可回收物中废纸投放量超过5吨且塑料品投放量超过3.5为事件.

由题意,有两个小区12月份的可回收物中废纸投放量超过5吨且塑料品投放量超过3.5吨,所以.

(Ⅱ)因为回收利用1吨废纸可再造出0.8吨好纸,

所以12月份投放的废纸可再造好纸超过4吨的小区有,共2个小区.

的所有可能取值为012.

.

所以的分布列为:

0

1

2

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知曲线在平面直角坐标系下的参数方程为为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系.

(1)求曲线的普通方程及极坐标方程;

(2)直线的极坐标方程是,射线 与曲线交于点与直线交于点,求线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

在某次考试中,从甲乙两个班各抽取10名学生的数学成绩进行统计分析,两个班成绩的茎叶图如图所示,成绩不小于90分的为及格.

1)用样本估计总体,请根据茎叶图对甲乙两个班级的成绩进行比较.

2)求从甲班10名学生和乙班10名学生中各抽取一人,已知有人及格的条件下乙班同学不及格的概率;

3)从甲班10人中抽取一人,乙班10人中抽取二人,三人中及格人数记为X,求X的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有人收集了七月份的日平均气温(摄氏度)与某次冷饮店日销售额(百元)的有关数据,为分析其关系,该店做了五次统计,所得数据如下:

日平均气温(摄氏度)

31

32

33

34

35

日销售额(百元)

5

6

7

8

10

由资料可知,关于的线性回归方程是,给出下列说法:

②日销售额(百元)与日平均气温(摄氏度)成正相关;

③当日平均气温为摄氏度时,日销售额一定为百元.

其中正确说法的序号是______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线和直线的焦点,上一点,过作抛物线的一条切线与轴交于,则外接圆面积的最小值为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率,且椭圆过点

1)求椭圆的标准方程;

2)设直线交于两点,点在椭圆上,是坐标原点,若,判定四边形的面积是否为定值?若为定值,求出该定值;如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】教材曾有介绍:圆上的点处的切线方程为。我们将其结论推广:椭圆上的点处的切线方程为,在解本题时可以直接应用。已知,直线与椭圆有且只有一个公共点.

(1)求的值;

(2)设为坐标原点,过椭圆上的两点分别作该椭圆的两条切线,且交于点。当变化时,求面积的最大值;

(3)在(2)的条件下,经过点作直线与该椭圆交于两点,在线段上存在点,使成立,试问:点是否在直线上,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在改革开放40年成就展上某地区某农产品近几年的产量统计表:

年份

2014

2015

2016

2017

2018

2019

年份代码

1

2

3

4

5

6

年产量(万吨)

6.6

6.7

7

7.1

7.2

7.4

1)根据表中数据,建立关于的线性回归方程

2)根据线性回归方程预测2020年该地区该农产品的年产量.

附:对于一组数据,…,,其回归直线方程的斜率和截距的最小二乘估计分别为.(参考数据:,计算结果保留到小数点后两位)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“互倒函数”的定义如下:对于定义域内每一个,都有成立,若现在已知函数是定义域在的“互倒函数”,且当时,成立.若函数)都恰有两个不同的零点,则实数的取值范围是( )

A.B.C.D.

查看答案和解析>>

同步练习册答案