精英家教网 > 高中数学 > 题目详情
15.在△ABC中,已知sinAcos2$\frac{C}{2}$+sinCcos2$\frac{A}{2}$=$\frac{3}{2}$sinB.
(1)求证:a、b、c成等差数列;
(2)求角B的取值范围.

分析 (1)利用条件,结合和角的正弦公式化简,再利用正弦定理,即可得出结论.
(2)由a,b,c成等差数列,利用等差数列的性质得到2b=a+c,再由余弦定理表示出cosB,两式联立小于b,得到关于a与c的关系式,整理后利用基本不等式变形,可得出cosB的范围,利用余弦函数的图象与性质,以及特殊角的三角函数值,根据B为三角形的内角,即可求出B的范围;

解答 证明:(1)∵sinAcos2$\frac{C}{2}$+sinCcos2$\frac{A}{2}$=$\frac{3}{2}$sinB,
∴sinA$\frac{1+cosC}{2}$+sinC$\frac{1+cosA}{2}$=$\frac{3}{2}$sinB,
∴sinA(1+cosC)+sinC(1+cosA)=3sinB,
∴sinA+sinC+sinAcosC+cosAsinC=3sinB,
∴sinA+sinC+sin(A+C)=3sinB,
∵A+B+C=π,
∴A+C=π-B,
∴sinA+sinC+sin(π-B)=3sinB,
∴sinA+sinC=2sinB,
∴根据正弦定理得:a+c=2b.即c-b=b-a,
故a、b、c成等差数列;
(2)∵△ABC的三边a,b,c成等差数列,∴2b=a+c,
又cosB=$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$,
∴消去b化简得:cosB=$\frac{3({a}^{2}+{c}^{2})}{8ac}-\frac{1}{4}$≥$\frac{6ac}{8ac}$-$\frac{1}{4}$=$\frac{1}{2}$,
又B为三角形的内角,
∴B∈(0,$\frac{π}{3}$].

点评 此题考查了余弦定理,等差、等比数列的性质,以及基本不等式的运用,熟练掌握定理及性质是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.某单位决定投资3200元建一仓库(长方体状),高度恒定,他的后墙利用后墙不花钱,正面用铁栅栏,每一米长造价是40元,两侧砌墙砖,每米造价是45元,顶部每1m2造价20元.
(1)计算仓库底面积的最大允许值s是多大?
(2)为使S最大,而实际投资又不超过预算,那么正面铁栅栏应设计多长?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知△ABC的三边a,b,c所对的角分别为A,B,C,若a:b:c=7:5:3.则∠A等于(  )
A.45°B.60°C.90°D.120°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.将下列各数值按从小到大的顺序排列.
$(\frac{4}{3})^{\frac{1}{3}}$,${2}^{\frac{2}{3}}$,$(-\frac{2}{3})^{3}$,$(\frac{3}{4})^{\frac{1}{2}}$,($\frac{5}{6}$)0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=x2-2x+alnx(a∈R),当a=2时,求函数f(x)在(1,f(1))处的切线方程为y=2x-3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数y=-($\frac{1}{2}$)x的图象(  )
A.与函数y=($\frac{1}{2}$)x的图象关于y对称
B.与函数y=($\frac{1}{2}$)x的图象关于坐标原点对称
C.与函数y=($\frac{1}{2}$)-x的图象关于y轴对称
D.与函数y=($\frac{1}{2}$)-x的图象关于坐标原点对称

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.(1)已知f(x)=sin(ωx+φ)的部分图象如图所示,求f(x)的解析式,其中φ取使|φ|最小的值;
(2)将函数cosx横坐标缩短到原来的$\frac{1}{2}$,再向右平移$\frac{π}{12}$个单位得到g(x),求出g(x)的解析式;
(3)证明图中即为g(x)的部分图象.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.求函数y=log0.2(1-ax)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设函数f(x)=1+3x+a•4x(a∈R),且当x∈(-∞,1)时,f(x)的图象在x轴上方,求实数a的取值范围.

查看答案和解析>>

同步练习册答案