精英家教网 > 高中数学 > 题目详情
如图,在四棱锥P-ABCD中,底面ABCD是菱形,∠ABC=60°,PA⊥面ABCD,点M、N分别为BC、PA的中点,且PA=AB=2.
(1)证明:BC⊥AMN;
(2)在线段PD上是否存在一点E,使得MN面ACE?若存在,求出PE的长,若不存在,说明理由.
(3)求二面角A-PD-C的正切值.
证明:(1)∵ABCD为菱形,
∴AB=BC
又∠ABC=60°,
∴AB=BC=AC,
又M为BC中点,∴BC⊥AM
而PA⊥平面ABCD,BC?平面ABCD,∴PA⊥BC
又PA∩AM=A,∴BC⊥平面AMN
(2)存在点E,使得MN面ACE,理由如下:
取PD中点E,连接NE,EC,AE,
∵N,E分别为PA,PD中点,
NE
.
.
1
2
AD

又在菱形ABCD中,CM
.
.
1
2
AD

NE
.
.
MC
,即MCEN是平行四边形
∴NMEC,
又EC?平面ACE,NM?平面ACE
∴MN平面ACE,
即在PD上存在一点E,使得NM平面ACE,
此时 PE=
1
2
PD=
2

(3)过A作AE垂直PD于E,作CF垂直PD于F,
则AE=
2
,CF=
14
2
,EF=
2
2
,AC=2
设二面角A-PD-C的平面角为θ
则AC=
AE2+CF2+EF2-2•AE•CF•cosθ
=2
则cosθ=
7
7

则tanθ=
6
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

如图,ABCD-A1B1C1D1为正方体,下面结论中正确的是______.(把你认为正确的结论都填上)
①BD平面CB1D1
②AC1⊥平面CB1D1
③AC1与底面ABCD所成角的正切值是
2

④二面角C-B1D1-C1的正切值是
2

⑤过点A1与异面直线AD与CB1成70°角的直线有2条.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

正三棱锥底面边长为a,侧棱与底面成角为60°,过底面一边作一截面使其与底面成30°的二面角,则此截面的面积为(  )
A.
3
4
a2
B.
3
3
a2
C.
1
3
a2
D.
3
8
a2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知正方体ABCD-A1B1C1D1的棱长为2,点E为棱AB的中点.
求:
(1)D1E与平面BC1D所成角的正弦值;
(2)二面角D-BC1-C的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在长方体ABCD-A1B1C1D1中,AD=AA1,AB=2,点E在棱AB上.
(1)证明:D1E⊥A1D;
(2)当E点为线段AB的中点时,求异面直线D1E与AC所成角的余弦值;
(3)试问E点在何处时,平面D1EC与平面AA1D1D所成二面角的平面角的余弦值为
6
6

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在边长为2的正方形ABCD中,点E是AB的中点,点F是BC的中点,将△AED,△CDF分别沿DE,DF折起,使A,C两点重合于A′.

(1)求证:A′D⊥EF;
(2)求二面角A′-EF-D的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知
u
=(-2,2,5)
v
=(6,-4,4)
u
v
分别是平面α,β的法向量,则平面α,β的位置关系式(  )
A.平行B.垂直
C.所成的二面角为锐角D.所成的二面角为钝角

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知梯形ABCD中,ADBC,∠ABC=∠BAD=
π
2
,AB=BC=2AD=4,E、F分别是AB、CD上的点,EFBC,AE=x,G是BC的中点.沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF(如图).
(1)当x=2时,求证:BD⊥EG;
(2)若以F、B、C、D为顶点的三棱锥的体积记为f(x),求f(x)的最大值;
(3)当f(x)取得最大值时,求二面角D-BF-C的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,正方体ABCD-A1B1C1D1中,点P是直线BC1的动点,则下列四个命题:
①三棱锥A-D1PC的体积不变;
②直线AP与平面ACD1所成角的大小不变;
③二面角P-AD1-C的大小不变:
其中正确的命题有____      .(把所有正确命题的编号填在横线上)

查看答案和解析>>

同步练习册答案