精英家教网 > 高中数学 > 题目详情

【题目】如图,四棱锥中,底面为梯形, ,平面 平面 .

(1)求证:

(2)是否存在点,到四棱锥各顶点的距离都相等?说明理由.

【答案】(1)见解析;(2)见解析.

【解析】试题分析:(1平面平面,所以平面,得;(2)点 是三个直角三角形的共同斜边的中点,所以,所以存在点(即点)到四棱锥各顶点的距离都相等.

试题解析:

(1)证明:设的中点为,连结,在梯形中,

因为

所以为等边三角形,

所以四边形为菱形,

因为 ,所以

所以

又平面平面 是交线, 平面

所以平面

又因为 平面,所以

(2)解:因为 ,所以平面

所以

所以 为直角三角形,

连结 ,由(1)知

所以

所以 为直角三角形, .

所以点 是三个直角三角形的共同斜边的中点,

所以

所以存在点(即点)到四棱锥各顶点的距离都相等.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若,求的单调区间;

(2)若关于的不等式对一切恒成立,求实数的取值范围;

(3)求证:对,都有.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给定椭圆,称圆为椭圆的“伴随圆”.已知点是椭圆上的点

(1)若过点的直线与椭圆有且只有一个公共点,求被椭圆的伴随圆所截得的弦长:

(2)是椭圆上的两点,设是直线的斜率,且满足,试问:直线是否过定点,如果过定点,求出定点坐标,如果不过定点,试说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的左、右焦点分别是,离心率,过点的直线交椭圆两点, 的周长为16.

(1)求椭圆的方程;

(2)已知为原点,圆 )与椭圆交于两点,点为椭圆上一动点,若直线轴分别交于两点,求证: 为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,直线的参数方程为为参数),以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,并使得它与直角坐标系有相同的长度单位,曲线的极坐标方程为

(1)求直线的普通方程和曲线的直角坐标方程;

(2)设曲线与直线交于两点,且点的坐标为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】当前网购已成为现代大学生的时尚。某大学学生宿舍4人参加网购约定:每个人通过掷一枚质地均匀的骰子决定自己去哪家购物掷出点数为5或6的人去淘宝网购物掷出点数小于5的人去京东商城购物且参加者必须从淘宝网和京东商城选择一家购物

1求这4个人中恰有1人去淘宝网购物的概率;

2分别表示这4个人中去淘宝网和京东商城购物的人数求随机变量的分布列与数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区某农产品近几年的产量统计如下表:

(1)根据表中数据,建立关于的线性回归方程

(2)若近几年该农产品每千克的价格 (单位:元)与年产量满足的函数关系式为,且每年该农产品都能售完.

①根据(1)中所建立的回归方程预测该地区年该农产品的产量;

②当为何值时,销售额最大?

附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某大型水上乐园内有一块矩形场地米, 米,以为直径的半圆和半圆(半圆在矩形内部)为两个半圆形水上主题乐园, 都建有围墙,游客只能从线段处进出该主题乐园.为了进一步提高经济效益,水上乐园管理部门决定沿着修建不锈钢护栏,沿着线段修建该主题乐园大门并设置检票口,其中分别为上的动点, ,且线段与线段在圆心连线的同侧.已知弧线部分的修建费用为元/米,直线部门的平均修建费用为元/米.

(1)若米,则检票等候区域(其中阴影部分)面积为多少平方米?

(2)试确定点的位置,使得修建费用最低.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有六支足球队参加单循环比赛(即任意两支球队只踢一场比赛),第一周的比赛中,各踢了场, 各踢了场, 踢了场,且队与队未踢过, 队与队也未踢过,则在第一周的比赛中, 队踢的比赛的场数是( )

A. B. C. D.

查看答案和解析>>

同步练习册答案