【题目】已知函数.
(1)若函数在区间上是增函数,求实数的取值范围;
(2)若是函数的极值点,求函数在上的最大值;
(3)在(2)的条件下,是否存在实数,使得函数的图象与函数的图象恰有个交点?若存在,请求出的取值范围;若不存在,请说明理由.
【答案】(1)a≥0;(2)(-7,-3)∪(-3,+∞).
【解析】【试题分析】(1)先对函数求导得f′(x)=3x2+2ax-3,再将问题转化为在[1,+∞)上恒有f′(x)≥0,从而求出实数a的取值范围;(2)先借助题设极值点是建立方程求出a=4,再运用导数知识求出其最大值;(3)先将问题转化为方程x3+4x2-3x=bx恰有3个不等实根,进而转化为方程x2+4x-(3+b)=0有两个非零不等实根,然后运用二次方程的根与系数之间的关系及判别式建立不等式组,通过解不等式组使得问题获解:
(1)f′(x)=3x2+2ax-3,
∵f(x)在[1,+∞)上是增函数,
∴在[1,+∞)上恒有f′(x)≥0.
∴-≤1且f′(1)=2a≥0.
∴a≥0.
(2)由题意知f′=0,即+-3=0,
∴a=4.
∴f(x)=x3+4x2-3x.
令f′(x)=3x2+8x-3=0得x=或x=-3.
∵f(-4)=12,f(-3)=18,f=-,f(1)=2,
∴f(x)在[-a,1]上的最大值是f(-3)=18.
(3)若函数g(x)=bx的图象与函数f(x)的图象恰有3个交点,即方程x3+4x2-3x=bx恰有3个不等实根.
∵x=0是其中一个根,
∴方程x2+4x-(3+b)=0有两个非零不等实根.
∴
∴b>-7且b≠-3.
∴满足条件的b存在,其取值范围是(-7,-3)∪(-3,+∞).
科目:高中数学 来源: 题型:
【题目】分形几何学是数学家伯努瓦·曼德尔布罗在世纪年代创立的一门新的数学学科,它的创立为解决传统科学众多领域的难题提供了全新的思路.按照如图所示的分形规律可得如图乙所示的一个树形图:
若记图乙中第行白圈的个数为,则__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C:x2+y2-8y+12=0,直线l经过点D(-2,0),且斜率为k.
(1)求以线段CD为直径的圆E的方程.
(2)若直线l与圆C相离,求k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等比数列{an}满足:|a2-a3|=10,a1a2a3=125.
(1) 求{an}的通项公式;
(2) 求证:++…+<1对任意正整数m都成立.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】直线l经过两直线l1:2x-y+4=0与l2:x-y+5=0的交点,且与直线x-2y-6=0垂直.
(1)求直线l的方程.
(2)若点P(a,1)到直线l的距离为,求实数a的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在添加剂的搭配使用中,为了找到最佳的搭配方案,需要对各种不同的搭配方式作比较.在试制某种牙膏新品种时,需要选用两种不同的添加剂.现有芳香度分别为0,1,2,3,4,5的六种添加剂可供选用.根据试验设计原理,通常首先要随机选取两种不同的添加剂进行搭配试验.(写解题过程)
(1)求所选用的两种不同的添加剂的芳香度之和等于4的概率;
(2)求所选用的两种不同的添加剂的芳香度之和不小于3的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com