精英家教网 > 高中数学 > 题目详情
AnBn分别表示数列{an}和{bn}的前n项和,对任何正整数nan=-,4Bn-12An=13n.

(1)求数列{bn}的通项公式;

(2)设有抛物线列C1C2,…,Cn,…,抛物线Cn(nN*)的对称轴平行于y轴,顶点为(an,bn),且通过点Dn(0,n2+1),过点Dn且与抛物线Cn相切的直线的斜率为kn,求极限.

(3)设集合X={x|x=2an,nN*},Y={y|y=4bn,nN*},若等差数列{Cn}的任一项Cn∈X∩Y,C1是X∩Y中的最大数,且-265<C10<-125,求{Cn}的通项公式.

解析:(1)a1=-,An=.??

∵4Bn=13n+12An=13n-6(n+4)n,?

Bn=-,b1=-,?

Bn==-(6n2+11n).??

bn=-.?

(2)设抛物线y=a(x+an)2+bn,?

n2+1=a(n+)2-,

n2+1=an2+1,∴a=1.?

∴y=(x+n+)2-?

=x2+(2n+3)x+(n+)2-.?

y′=2x+2n+3.?

Dn在抛物线上,且l为抛物线在Dn点的切线.?

抛物线在Dn处的导数为y′=2n+3.?

??

=

=?

=.?

(3)x=-2n-3,y=-12n-5.x=-2(n-1)-5,∴y≤x,X∩Y=Y.?

Cn∈{x|x=-12n-5,n∈N*}.?

∴当n=1时,Cmax=-17,C1=-17,?

C10=-17+9d,-265<-17+9d<-125,?

-27.3<d<-12,d=-27,-26,…,-11.?

仅当d=-24时,C10=-17-9×24=233∈{x|x=-12n-5,n∈N*}.?

Cn=-17-24(n-1)=-24n+7.

练习册系列答案
相关习题

科目:高中数学 来源:数学教研室 题型:044

AnBn分别表示数列{an}{bn}n项的和,对任意正整数nan=4Bn12An=13n.

1)求数列{bn}的通项公式;

2)设有抛物线列C1C2Cn抛物线CnnN*)的对称轴平行于y轴,顶点为(anbn),且通过点Dn0n2+1),求点Dn且与抛物线Cn相切的直线斜率为kn,求极限.

3)设集合X={x|x=2annN*}Y={y|y=4bnnN*}.若等差数列{Cn}的任一项CnXYC1XY中的最大数,且-265<C10<125.{Cn}的通项公式.

 

查看答案和解析>>

科目:高中数学 来源: 题型:044

AnBn分别表示数列{an}{bn}n项的和,对任意正整数nan=4Bn12An=13n.

1)求数列{bn}的通项公式;

2)设有抛物线列C1C2Cn抛物线CnnN*)的对称轴平行于y轴,顶点为(anbn),且通过点Dn0n2+1),求点Dn且与抛物线Cn相切的直线斜率为kn,求极限.

3)设集合X={x|x=2annN*}Y={y|y=4bnnN*}.若等差数列{Cn}的任一项CnXYC1XY中的最大数,且-265<C10<125.{Cn}的通项公式.

 

查看答案和解析>>

科目:高中数学 来源: 题型:

若An和Bn分别表示数列{an}和{bn}的前n项和,对任意正整数nan =-,4Bn-12An=13n.

 

(1)求数列{bn}的通项公式;

 

(2)设有抛物线列c1c2、…cn、…,抛物线cn(n∈N)的对称轴平行于y轴,顶点为(an,bn),且通过点Dn(0,n2+1),过点Dn且与抛物线cn相切的直线斜率为kn,求极限

 

(3)设集合X={x|x=2an,n∈N},Y={y|y=4bn,n∈N}.若等差数列{cn}的任一项cn∈X∩Y,

c1是X∩Y中的最大数,且-265<c10<-125,求{cn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

若An和Bn分别表示数列{an}和{bn}的前n项和,对任意正整数nan =-,4Bn-12An=13n.

 

(1)求数列{bn}的通项公式;

 

(2)设有抛物线列c1c2、…cn、…,抛物线cn(n∈N)的对称轴平行于y轴,顶点为(an,bn),且通过点Dn(0,n2+1),过点Dn且与抛物线cn相切的直线斜率为kn,求极限

 

(3)设集合X={xx=2an,n∈N},Y={y|y=4bn,n∈N}.若等差数列{cn}的任一项cn∈X∩Y, c1是X∩Y中的最大数,且-265<c10<-125,求{cn}的通项公式.

查看答案和解析>>

同步练习册答案