精英家教网 > 高中数学 > 题目详情

【题目】已知正项数列满足:,其中

1)若,求数列的前项的和;

2)若

①求数列的通项公式;

②记数列的前项的和为,若无穷项等比数列始终满足,求数列的通项公式.

【答案】12)①

【解析】

1)当,求和时相邻两项组合得,然后再分组,利用等差、等比数列的前项和的公式求和.
2)①当,由条件可得,即数列的奇数项和偶数项分别成公差为4的等差数列,分奇数项和偶数项分别求通项公式可得答案.
②由①可求出,由可得,则可以得到,再讨论当时,成立,所以时可用反证法说明不成立.

解:(1)当时,,记数列的前项的和为

2)①当时,由,所以

所以

所以数列的奇数项和偶数项分别成公差为4的等差数列,

所以

所以

②由①可知

设等比数列的公比为

因为无穷项等比数列始终满足

所以当时,,所以

所以

,所以

时,成立,所以

时,下证对任意不恒成立,

要证,即证

先证,从而得到,即

下证对任意的不恒成立,

,所以要证对任意的不恒成立,

所以存在,当时,

所以对任意的不恒成立.

所以当时,对任意不恒成立,

所以,所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在锐角中,角的对边分别为.

(1)求角的大小;

(2)若,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,曲线在点处的切线方程为.

(1)求函数的解析式,并证明:.

(2)已知,且函数与函数的图象交于两点,且线段的中点为,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(Ⅰ)求的单调区间;

(Ⅱ)当时,试判断零点的个数;

(Ⅲ)当时,若对,都有)成立,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年9~12月某市邮政快递业务量完成件数较2017年9~12月同比增长25%,该市2017年9~12月邮政快递业务量柱形图及2018年9~12月邮政快递业务量结构扇形图如图所示,根据统计图,给出下列结论:

①2018年9~12月,该市邮政快递业务量完成件数约1500万件;

②2018年9~12月,该市邮政快递同城业务量完成件数与2017年9~12月相比有所减少;

③2018年9~12月,该市邮政快递国际及港澳台业务量同比增长超过75%,其中正确结论的个数为( )

A. 3

B. 2

C. 1

D. 0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率,且圆过椭圆的上,下顶点.

1)求椭圆的方程.

2)若直线的斜率为,且直线交椭圆两点,点关于点的对称点为,点是椭圆上一点,判断直线的斜率之和是否为定值,如果是,请求出此定值:如果不是,请说明理.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

1)讨论的单调区间;

2)当时,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线(为参数),曲线(为参数)

1)设直线与曲线相交于两点,求劣弧的弧长;

2)若把曲线上各点的横坐标缩短为原来的,纵坐标缩短为原来的,得到曲线,设点是曲线上的一个动点,求点到直线的距离的最小值,及点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

讨论的极值点的个数;

,求证:

查看答案和解析>>

同步练习册答案