精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)的定义域为R,且对任意的x,y∈R有f(x+y)=f(x)+f(y)当时,,f(1)=1

(1)求f(0),f(3)的值;

(2)判断f(x)的单调性并证明;

(3)若f(4x-a)+f(6+2x+1)>2对任意x∈R恒成立,求实数a的取值范围.

【答案】(1)见解析;(2)见解析;(3)

【解析】

(1)令求解通过,求解即可得出结论;(2)上是增函数,通过任取证明得到结果;(3)对任意恒成立,得恒成立利用函数的单调性,构造函数,转化求解即可.

(1)令x=y=0,得f(0+0)=f(0)+f(0),所以f(0)=0.

由f(1)=1,得f(2)=f(1)+f(1)=1+1=2,

f(3)=f(2)+f(1)=2+1=3.

(2)f(x)在R上是增函数,证明如下:

任取x1,x2∈R,且x1<x2,则x2-x1>0,且f(x2-x1)>0,

所以f(x2)-f(x1)=f(x2-x1+x1)-f(x1

=f(x2-x1)+f(x1)-f(x1)=f(x2-x1)>0,

即f(x1)<f(x2),所以f(x)在R上是增函数.

(3)由f(4x-a)+f(6+2x+1)>2对任意x∈R恒成立,

得f(4x-a+6+2x+1)>f(2)恒成立.

因为f(x)在R上是增函数,所以4x-a+6+2x+1>2恒成立,

即4x+22x+4>a恒成立

令g(x)=4x+22x+4=(2x+1)2+3,

因为2x>0,所以g(x)>4

故a≤4

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆 +y2=1,A,B,C,D为椭圆上四个动点,且AC,BD相交于原点O,设A(x1 , y1),B(x2 , y2)满足 =
(1)求证: + =
(2)kAB+kBC的值是否为定值,若是,请求出此定值,并求出四边形ABCD面积的最大值,否则,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)求的单调区间;

(Ⅱ)求在区间上的最小值.

【答案】(Ⅰ);(Ⅱ).

【解析】(Ⅰ).

,得.

的情况如上:

所以,的单调递减区间是,单调递增区间是.

(Ⅱ)当,即时,函数上单调递增,

所以在区间上的最小值为.

,即时,

由(Ⅰ)知上单调递减,在上单调递增,

所以在区间上的最小值为.

,即时,函数上单调递减,

所以在区间上的最小值为.

综上,当时,的最小值为

时,的最小值为

时,的最小值为.

型】解答
束】
19

【题目】已知抛物线的顶点在原点,焦点在坐标轴上,点为抛物线上一点.

1)求的方程;

2)若点上,过的两弦,若,求证: 直线过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是定义在上的偶函数,且当时, .现已画出函数轴左侧的图象,如图所示,并根据图象:

(1)直接写出函数 的增区间;

(2)写出函数 的解析式;

(3)若函数 ,求函数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是定义域为R的偶函数,当时,f(x)=x2-2x

(1)求出函数f(x)在R上的解析式;

(2)画出函数f(x)的图象,并根据图象写出f(x)的单调区间.

(3)求使f(x)=1时的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解篮球爱好者小李的投篮命中率与打篮球时间之间的关系,下表记录了小李某月1号到5号每天打篮球时间x单位:小时)与当天投篮命中率y之间的关系:

时间x

1

2

3

4

5

命中率y

0.4

0.5

0.6

0.6

0.4


(1)求小李这5天的平均投篮命中率;
(2)用线性回归分析的方法,预测小李该月6号打6小时篮球的投篮命中率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求的最大值;

(2)当时,函数有最小值. 的最小值为,求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,底面为正方形,四边形是矩形,平面平面.

(1)求证:平面平面

(2)若过直线的一个平面与线段分别相交于点 (点与点均不重合),求证:

(3)判断线段上是否存在一点,使得平面平面?若存在,求的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左右焦点分别为,上顶点为,若直线的斜率为1,且与椭圆的另一个交点为 的周长为.

(1)求椭圆的标准方程;

(2)过点的直线(直线的斜率不为1)与椭圆交于两点,点在点的上方,若,求直线的斜率.

查看答案和解析>>

同步练习册答案