【题目】已知函数f(x)的定义域为R,且对任意的x,y∈R有f(x+y)=f(x)+f(y)当时,,f(1)=1
(1)求f(0),f(3)的值;
(2)判断f(x)的单调性并证明;
(3)若f(4x-a)+f(6+2x+1)>2对任意x∈R恒成立,求实数a的取值范围.
【答案】(1)见解析;(2)见解析;(3)
【解析】
(1)令,求解,通过,求解即可得出结论;(2)在上是增函数,通过任取,且,则,且,证明,得到结果;(3)由对任意恒成立,得恒成立,利用函数的单调性,构造函数,转化求解即可.
(1)令x=y=0,得f(0+0)=f(0)+f(0),所以f(0)=0.
由f(1)=1,得f(2)=f(1)+f(1)=1+1=2,
f(3)=f(2)+f(1)=2+1=3.
(2)f(x)在R上是增函数,证明如下:
任取x1,x2∈R,且x1<x2,则x2-x1>0,且f(x2-x1)>0,
所以f(x2)-f(x1)=f(x2-x1+x1)-f(x1)
=f(x2-x1)+f(x1)-f(x1)=f(x2-x1)>0,
即f(x1)<f(x2),所以f(x)在R上是增函数.
(3)由f(4x-a)+f(6+2x+1)>2对任意x∈R恒成立,
得f(4x-a+6+2x+1)>f(2)恒成立.
因为f(x)在R上是增函数,所以4x-a+6+2x+1>2恒成立,
即4x+22x+4>a恒成立
令g(x)=4x+22x+4=(2x+1)2+3,
因为2x>0,所以g(x)>4
故a≤4
科目:高中数学 来源: 题型:
【题目】已知椭圆 +y2=1,A,B,C,D为椭圆上四个动点,且AC,BD相交于原点O,设A(x1 , y1),B(x2 , y2)满足 = .
(1)求证: + = ;
(2)kAB+kBC的值是否为定值,若是,请求出此定值,并求出四边形ABCD面积的最大值,否则,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(Ⅰ)求的单调区间;
(Ⅱ)求在区间上的最小值.
【答案】(Ⅰ);(Ⅱ).
【解析】(Ⅰ).
令,得.
与的情况如上:
所以,的单调递减区间是,单调递增区间是.
(Ⅱ)当,即时,函数在上单调递增,
所以在区间上的最小值为.
当,即时,
由(Ⅰ)知在上单调递减,在上单调递增,
所以在区间上的最小值为.
当,即时,函数在上单调递减,
所以在区间上的最小值为.
综上,当时,的最小值为;
当时,的最小值为;
当时,的最小值为.
【题型】解答题
【结束】
19
【题目】已知抛物线的顶点在原点,焦点在坐标轴上,点为抛物线上一点.
(1)求的方程;
(2)若点在上,过作的两弦与,若,求证: 直线过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数是定义在上的偶函数,且当时, .现已画出函数在轴左侧的图象,如图所示,并根据图象:
(1)直接写出函数, 的增区间;
(2)写出函数, 的解析式;
(3)若函数, ,求函数的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)是定义域为R的偶函数,当时,f(x)=x2-2x
(1)求出函数f(x)在R上的解析式;
(2)画出函数f(x)的图象,并根据图象写出f(x)的单调区间.
(3)求使f(x)=1时的x的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解篮球爱好者小李的投篮命中率与打篮球时间之间的关系,下表记录了小李某月1号到5号每天打篮球时间x单位:小时)与当天投篮命中率y之间的关系:
时间x | 1 | 2 | 3 | 4 | 5 |
命中率y | 0.4 | 0.5 | 0.6 | 0.6 | 0.4 |
(1)求小李这5天的平均投篮命中率;
(2)用线性回归分析的方法,预测小李该月6号打6小时篮球的投篮命中率. .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在多面体中,底面为正方形,四边形是矩形,平面平面.
(1)求证:平面平面;
(2)若过直线的一个平面与线段和分别相交于点和 (点与点均不重合),求证: ;
(3)判断线段上是否存在一点,使得平面平面?若存在,求的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左右焦点分别为,上顶点为,若直线的斜率为1,且与椭圆的另一个交点为, 的周长为.
(1)求椭圆的标准方程;
(2)过点的直线(直线的斜率不为1)与椭圆交于两点,点在点的上方,若,求直线的斜率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com